Cargando…

Genomic evaluation methods to include intermediate correlated features such as high-throughput or omics phenotypes

Gene expression is supposed to be an intermediate between DNA and the phenotype, and it can be measured. Thus, for a trait, we may have intermediate measures, which are in fact a series of genetically controlled traits. Similarly, several traits may be measured or predicted using infrared spectra, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Legarra, A., Christensen, O.F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873823/
https://www.ncbi.nlm.nih.gov/pubmed/36713125
http://dx.doi.org/10.3168/jdsc.2022-0276
Descripción
Sumario:Gene expression is supposed to be an intermediate between DNA and the phenotype, and it can be measured. Thus, for a trait, we may have intermediate measures, which are in fact a series of genetically controlled traits. Similarly, several traits may be measured or predicted using infrared spectra, accelerometers, and similar high-throughput measures that we will call “omics.” Although these measurements have errors, many of them are heritable, and they may be more accurate or easier to record than the trait of interest. It is therefore important to develop methods to use intermediate measurements in selection. Here, we present methods and perspectives for selection based on massively recorded intermediate traits (omics). Recent developments allow a hierarchical integrated framework for prediction, in which a trait is partially controlled by omics. In addition, the omics measures are themselves partly controlled by genetics (“mediated breeding values”) and partly by environment or residual factors. Thus, a part of the genetic determinism of a trait is mediated by omics, whereas the remaining part is not mediated, which results in “residual breeding values.” In such a framework, genetic evaluations consist of 2 nested genomic BLUP-based models. In the first, the effect of omics on the trait (which can be seen as an improved estimate of the phenotype) and the residual breeding values are estimated. The second model extracts the mediated breeding values from the improved estimate of the phenotype, considering that omics themselves are heritable. The whole procedure is called GOBLUP (genomics omics BLUP) and it allows measures in only some individuals; that is, it is a “single-step”-like method. In this model, heritability is split into “mediated” and “not mediated” parts. This decomposition allows us to predict how accurate the omics measure of the trait would be compared with the direct measure. The ideal omics measure is heritable and explains a large part of the phenotypic variation of the trait. Ideally, this could be the case for some traits with low heritability. However, even if the omics measure explains only a small part of the phenotypic variation, when omics measurement themselves are heritable, the use of such a model would lead to more accurate selection. Expressions for upper bounds of reliability given omics measurements are also presented. More studies are needed to confirm the usefulness of omics or high-throughput prediction. Usefulness of the technology likely needs to be checked on a case-by-case basis.