Cargando…
A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients
Previous studies have conducted time course characterization of murine colitis models through transcriptional profiling of differential expression. We characterize the transcriptional landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer (AT) colitis to derive t...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873918/ https://www.ncbi.nlm.nih.gov/pubmed/36694043 http://dx.doi.org/10.1038/s42003-023-04469-y |
_version_ | 1784877687433592832 |
---|---|
author | Peters, Lauren A. Friedman, Joshua R. Stojmirovic, Aleksandar Hagen, Jacob Houten, Sander Dodatko, Tetyana Amaro, Mariana P. Restrepo, Paula Chai, Zhi Rodrigo Mora, J. Raymond, Holly A. Curran, Mark Dobrin, Radu Das, Anuk Xiong, Huabao Schadt, Eric E. Argmann, Carmen Losic, Bojan |
author_facet | Peters, Lauren A. Friedman, Joshua R. Stojmirovic, Aleksandar Hagen, Jacob Houten, Sander Dodatko, Tetyana Amaro, Mariana P. Restrepo, Paula Chai, Zhi Rodrigo Mora, J. Raymond, Holly A. Curran, Mark Dobrin, Radu Das, Anuk Xiong, Huabao Schadt, Eric E. Argmann, Carmen Losic, Bojan |
author_sort | Peters, Lauren A. |
collection | PubMed |
description | Previous studies have conducted time course characterization of murine colitis models through transcriptional profiling of differential expression. We characterize the transcriptional landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer (AT) colitis to derive temporal gene expression and splicing signatures in blood and colonic tissue in order to capture dynamics of colitis remission and relapse. We identify sub networks of patient-derived causal networks that are enriched in these temporal signatures to distinguish acute and chronic disease components within the broader molecular landscape of IBD. The interaction between the DSS phenotype and chronological time-point naturally defines parsimonious temporal gene expression and splicing signatures associated with acute and chronic phases disease (as opposed to ordinary time-specific differential expression/splicing). We show these expression and splicing signatures are largely orthogonal, i.e. affect different genetic bodies, and that using machine learning, signatures are predictive of histopathological measures from both blood and intestinal data in murine colitis models as well as an independent cohort of IBD patients. Through access to longitudinal multi-scale profiling from disease tissue in IBD patient cohorts, we can apply this machine learning pipeline to generation of direct patient temporal multimodal regulatory signatures for prediction of histopathological outcomes. |
format | Online Article Text |
id | pubmed-9873918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98739182023-01-26 A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients Peters, Lauren A. Friedman, Joshua R. Stojmirovic, Aleksandar Hagen, Jacob Houten, Sander Dodatko, Tetyana Amaro, Mariana P. Restrepo, Paula Chai, Zhi Rodrigo Mora, J. Raymond, Holly A. Curran, Mark Dobrin, Radu Das, Anuk Xiong, Huabao Schadt, Eric E. Argmann, Carmen Losic, Bojan Commun Biol Article Previous studies have conducted time course characterization of murine colitis models through transcriptional profiling of differential expression. We characterize the transcriptional landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer (AT) colitis to derive temporal gene expression and splicing signatures in blood and colonic tissue in order to capture dynamics of colitis remission and relapse. We identify sub networks of patient-derived causal networks that are enriched in these temporal signatures to distinguish acute and chronic disease components within the broader molecular landscape of IBD. The interaction between the DSS phenotype and chronological time-point naturally defines parsimonious temporal gene expression and splicing signatures associated with acute and chronic phases disease (as opposed to ordinary time-specific differential expression/splicing). We show these expression and splicing signatures are largely orthogonal, i.e. affect different genetic bodies, and that using machine learning, signatures are predictive of histopathological measures from both blood and intestinal data in murine colitis models as well as an independent cohort of IBD patients. Through access to longitudinal multi-scale profiling from disease tissue in IBD patient cohorts, we can apply this machine learning pipeline to generation of direct patient temporal multimodal regulatory signatures for prediction of histopathological outcomes. Nature Publishing Group UK 2023-01-24 /pmc/articles/PMC9873918/ /pubmed/36694043 http://dx.doi.org/10.1038/s42003-023-04469-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Peters, Lauren A. Friedman, Joshua R. Stojmirovic, Aleksandar Hagen, Jacob Houten, Sander Dodatko, Tetyana Amaro, Mariana P. Restrepo, Paula Chai, Zhi Rodrigo Mora, J. Raymond, Holly A. Curran, Mark Dobrin, Radu Das, Anuk Xiong, Huabao Schadt, Eric E. Argmann, Carmen Losic, Bojan A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients |
title | A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients |
title_full | A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients |
title_fullStr | A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients |
title_full_unstemmed | A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients |
title_short | A temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients |
title_sort | temporal classifier predicts histopathology state and parses acute-chronic phasing in inflammatory bowel disease patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873918/ https://www.ncbi.nlm.nih.gov/pubmed/36694043 http://dx.doi.org/10.1038/s42003-023-04469-y |
work_keys_str_mv | AT peterslaurena atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT friedmanjoshuar atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT stojmirovicaleksandar atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT hagenjacob atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT houtensander atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT dodatkotetyana atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT amaromarianap atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT restrepopaula atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT chaizhi atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT rodrigomoraj atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT raymondhollya atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT curranmark atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT dobrinradu atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT dasanuk atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT xionghuabao atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT schadterice atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT argmanncarmen atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT losicbojan atemporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT peterslaurena temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT friedmanjoshuar temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT stojmirovicaleksandar temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT hagenjacob temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT houtensander temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT dodatkotetyana temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT amaromarianap temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT restrepopaula temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT chaizhi temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT rodrigomoraj temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT raymondhollya temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT curranmark temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT dobrinradu temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT dasanuk temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT xionghuabao temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT schadterice temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT argmanncarmen temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients AT losicbojan temporalclassifierpredictshistopathologystateandparsesacutechronicphasingininflammatoryboweldiseasepatients |