Cargando…
Context-dependent representation of within- and between-model uncertainty: aggregating probabilistic predictions in infectious disease epidemiology
Probabilistic predictions support public health planning and decision making, especially in infectious disease emergencies. Aggregating outputs from multiple models yields more robust predictions of outcomes and associated uncertainty. While the selection of an aggregation method can be guided by re...
Autores principales: | Howerton, Emily, Runge, Michael C., Bogich, Tiffany L., Borchering, Rebecca K., Inamine, Hidetoshi, Lessler, Justin, Mullany, Luke C., Probert, William J. M., Smith, Claire P., Truelove, Shaun, Viboud, Cécile, Shea, Katriona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874266/ https://www.ncbi.nlm.nih.gov/pubmed/36695018 http://dx.doi.org/10.1098/rsif.2022.0659 |
Ejemplares similares
-
Scenario Design for Infectious Disease Projections: Integrating Concepts from Decision Analysis and Experimental Design
por: Runge, Michael C., et al.
Publicado: (2023) -
Causes of delayed outbreak responses and their impacts on epidemic spread
por: Tao, Yun, et al.
Publicado: (2021) -
Synergistic interventions to control COVID-19: Mass testing and isolation mitigates reliance on distancing
por: Howerton, Emily, et al.
Publicado: (2021) -
Strategic testing approaches for targeted disease monitoring can be used to inform pandemic decision-making
por: Nichols, James D., et al.
Publicado: (2021) -
Emergent patterns from probabilistic generalizations of lateral activation and inhibition
por: Willis, Lisa, et al.
Publicado: (2016)