Cargando…
Fairness in the prediction of acute postoperative pain using machine learning models
INTRODUCTION: Overall performance of machine learning-based prediction models is promising; however, their generalizability and fairness must be vigorously investigated to ensure they perform sufficiently well for all patients. OBJECTIVE: This study aimed to evaluate prediction bias in machine learn...
Autores principales: | Davoudi, Anis, Sajdeya, Ruba, Ison, Ron, Hagen, Jennifer, Rashidi, Parisa, Price, Catherine C., Tighe, Patrick J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874861/ https://www.ncbi.nlm.nih.gov/pubmed/36714611 http://dx.doi.org/10.3389/fdgth.2022.970281 |
Ejemplares similares
-
Potentials and Challenges of Pervasive Sensing in the Intensive Care Unit
por: Davoudi, Anis, et al.
Publicado: (2022) -
Deep Multi-Modal Transfer Learning for Augmented Patient Acuity Assessment in the Intelligent ICU
por: Shickel, Benjamin, et al.
Publicado: (2021) -
Accessing Artificial Intelligence for Clinical Decision-Making
por: Giordano, Chris, et al.
Publicado: (2021) -
Multi-dimensional patient acuity estimation with longitudinal EHR tokenization and flexible transformer networks
por: Shickel, Benjamin, et al.
Publicado: (2022) -
Foundations for fairness in digital health apps
por: Buda, Teodora Sandra, et al.
Publicado: (2022)