Cargando…
Optimal control by deep learning techniques and its applications on epidemic models
We represent the optimal control functions by neural networks and solve optimal control problems by deep learning techniques. Adjoint sensitivity analysis is applied to train the neural networks embedded in differential equations. This method can not only be applied in classic epidemic control probl...
Autores principales: | Yin, Shuangshuang, Wu, Jianhong, Song, Pengfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875778/ https://www.ncbi.nlm.nih.gov/pubmed/36695914 http://dx.doi.org/10.1007/s00285-023-01873-0 |
Ejemplares similares
-
A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization
por: Bushaj, Sabah, et al.
Publicado: (2022) -
Deep learning model based multimedia retrieval and its optimization in augmented reality applications
por: Gupta, Yash Prakash, et al.
Publicado: (2022) -
Modelling and optimal control of multi strain epidemics, with application to COVID-19
por: Arruda, Edilson F., et al.
Publicado: (2021) -
Deep Learning and Its Applications in Biomedicine
por: Cao, Chensi, et al.
Publicado: (2018) -
Optimal Control Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19
por: Abbasi, Zohreh, et al.
Publicado: (2020)