Cargando…
Developing a Bayesian hierarchical model for a prospective individual patient data meta-analysis with continuous monitoring
BACKGROUND: Numerous clinical trials have been initiated to find effective treatments for COVID-19. These trials have often been initiated in regions where the pandemic has already peaked. Consequently, achieving full enrollment in a single trial might require additional COVID-19 surges in the same...
Autores principales: | Wu, Danni, Goldfeld, Keith S., Petkova, Eva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875783/ https://www.ncbi.nlm.nih.gov/pubmed/36698073 http://dx.doi.org/10.1186/s12874-022-01813-4 |
Ejemplares similares
-
Prospective individual patient data meta‐analysis: Evaluating convalescent plasma for COVID‐19
por: Goldfeld, Keith S., et al.
Publicado: (2021) -
Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome
por: Park, Hyung G., et al.
Publicado: (2023) -
Characterizing belief bias in syllogistic reasoning: A hierarchical Bayesian meta-analysis of ROC data
por: Trippas, Dries, et al.
Publicado: (2018) -
Bayesian hierarchical meta‐analytic methods for modeling surrogate relationships that vary across treatment classes using aggregate data
por: Papanikos, Tasos, et al.
Publicado: (2020) -
A hierarchical Bayesian approach for handling missing classification data
por: Ketz, Alison C., et al.
Publicado: (2019)