Cargando…
Benchmarking the generalizability of brain age models: Challenges posed by scanner variance and prediction bias
Machine learning has been increasingly applied to neuroimaging data to predict age, deriving a personalized biomarker with potential clinical applications. The scientific and clinical value of these models depends on their applicability to independently acquired scans from diverse sources. According...
Autores principales: | Jirsaraie, Robert J., Kaufmann, Tobias, Bashyam, Vishnu, Erus, Guray, Luby, Joan L., Westlye, Lars T., Davatzikos, Christos, Barch, Deanna M., Sotiras, Aristeidis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875922/ https://www.ncbi.nlm.nih.gov/pubmed/36346213 http://dx.doi.org/10.1002/hbm.26144 |
Ejemplares similares
-
A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility
por: Jirsaraie, Robert J., et al.
Publicado: (2023) -
Neighborhood Disadvantage, Brain, and Neurocognitive Function: Relations Among Cognitively Normal Older Adults
por: Wright, Regina, et al.
Publicado: (2020) -
METABOLOMIC SIGNATURES OF BRAIN ATROPHY PATTERNS IN AGING AND ALZHEIMER'S DISEASE
por: Tian, Qu, et al.
Publicado: (2022) -
Variance components of ratings of physician-patient communication: A generalizability theory analysis
por: Röttele, Nicole, et al.
Publicado: (2021) -
Disentangling Alzheimer’s disease neurodegeneration from typical brain ageing using machine learning
por: Hwang, Gyujoon, et al.
Publicado: (2022)