Cargando…
Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study
Previous studies have explored resting‐state functional connectivity (rs‐FC) of the amygdala in patients with autism spectrum disorder (ASD). However, it remains unclear whether there are frequency‐specific FC alterations of the amygdala in ASD and whether FC in specific frequency bands can be used...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875923/ https://www.ncbi.nlm.nih.gov/pubmed/36346215 http://dx.doi.org/10.1002/hbm.26141 |
_version_ | 1784878054148931584 |
---|---|
author | Ma, Huibin Cao, Yikang Li, Mengting Zhan, Linlin Xie, Zhou Huang, Lina Gao, Yanyan Jia, Xize |
author_facet | Ma, Huibin Cao, Yikang Li, Mengting Zhan, Linlin Xie, Zhou Huang, Lina Gao, Yanyan Jia, Xize |
author_sort | Ma, Huibin |
collection | PubMed |
description | Previous studies have explored resting‐state functional connectivity (rs‐FC) of the amygdala in patients with autism spectrum disorder (ASD). However, it remains unclear whether there are frequency‐specific FC alterations of the amygdala in ASD and whether FC in specific frequency bands can be used to distinguish patients with ASD from typical controls (TCs). Data from 306 patients with ASD and 314 age‐matched and sex‐matched TCs were collected from 28 sites in the Autism Brain Imaging Data Exchange database. The bilateral amygdala, defined as the seed regions, was used to perform seed‐based FC analyses in the conventional, slow‐5, and slow‐4 frequency bands at each site. Image‐based meta‐analyses were used to obtain consistent brain regions across 28 sites in the three frequency bands. By combining generative adversarial networks and deep neural networks, a deep learning approach was applied to distinguish patients with ASD from TCs. The meta‐analysis results showed frequency band specificity of FC in ASD, which was reflected in the slow‐5 frequency band instead of the conventional and slow‐4 frequency bands. The deep learning results showed that, compared with the conventional and slow‐4 frequency bands, the slow‐5 frequency band exhibited a higher accuracy of 74.73%, precision of 74.58%, recall of 75.05%, and area under the curve of 0.811 to distinguish patients with ASD from TCs. These findings may help us to understand the pathological mechanisms of ASD and provide preliminary guidance for the clinical diagnosis of ASD. |
format | Online Article Text |
id | pubmed-9875923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98759232023-01-25 Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study Ma, Huibin Cao, Yikang Li, Mengting Zhan, Linlin Xie, Zhou Huang, Lina Gao, Yanyan Jia, Xize Hum Brain Mapp Research Articles Previous studies have explored resting‐state functional connectivity (rs‐FC) of the amygdala in patients with autism spectrum disorder (ASD). However, it remains unclear whether there are frequency‐specific FC alterations of the amygdala in ASD and whether FC in specific frequency bands can be used to distinguish patients with ASD from typical controls (TCs). Data from 306 patients with ASD and 314 age‐matched and sex‐matched TCs were collected from 28 sites in the Autism Brain Imaging Data Exchange database. The bilateral amygdala, defined as the seed regions, was used to perform seed‐based FC analyses in the conventional, slow‐5, and slow‐4 frequency bands at each site. Image‐based meta‐analyses were used to obtain consistent brain regions across 28 sites in the three frequency bands. By combining generative adversarial networks and deep neural networks, a deep learning approach was applied to distinguish patients with ASD from TCs. The meta‐analysis results showed frequency band specificity of FC in ASD, which was reflected in the slow‐5 frequency band instead of the conventional and slow‐4 frequency bands. The deep learning results showed that, compared with the conventional and slow‐4 frequency bands, the slow‐5 frequency band exhibited a higher accuracy of 74.73%, precision of 74.58%, recall of 75.05%, and area under the curve of 0.811 to distinguish patients with ASD from TCs. These findings may help us to understand the pathological mechanisms of ASD and provide preliminary guidance for the clinical diagnosis of ASD. John Wiley & Sons, Inc. 2022-11-08 /pmc/articles/PMC9875923/ /pubmed/36346215 http://dx.doi.org/10.1002/hbm.26141 Text en © 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Ma, Huibin Cao, Yikang Li, Mengting Zhan, Linlin Xie, Zhou Huang, Lina Gao, Yanyan Jia, Xize Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study |
title | Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study |
title_full | Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study |
title_fullStr | Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study |
title_full_unstemmed | Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study |
title_short | Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study |
title_sort | abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: a multisite functional magnetic resonance imaging study |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875923/ https://www.ncbi.nlm.nih.gov/pubmed/36346215 http://dx.doi.org/10.1002/hbm.26141 |
work_keys_str_mv | AT mahuibin abnormalamygdalafunctionalconnectivityanddeeplearningclassificationinmultifrequencybandsinautismspectrumdisorderamultisitefunctionalmagneticresonanceimagingstudy AT caoyikang abnormalamygdalafunctionalconnectivityanddeeplearningclassificationinmultifrequencybandsinautismspectrumdisorderamultisitefunctionalmagneticresonanceimagingstudy AT limengting abnormalamygdalafunctionalconnectivityanddeeplearningclassificationinmultifrequencybandsinautismspectrumdisorderamultisitefunctionalmagneticresonanceimagingstudy AT zhanlinlin abnormalamygdalafunctionalconnectivityanddeeplearningclassificationinmultifrequencybandsinautismspectrumdisorderamultisitefunctionalmagneticresonanceimagingstudy AT xiezhou abnormalamygdalafunctionalconnectivityanddeeplearningclassificationinmultifrequencybandsinautismspectrumdisorderamultisitefunctionalmagneticresonanceimagingstudy AT huanglina abnormalamygdalafunctionalconnectivityanddeeplearningclassificationinmultifrequencybandsinautismspectrumdisorderamultisitefunctionalmagneticresonanceimagingstudy AT gaoyanyan abnormalamygdalafunctionalconnectivityanddeeplearningclassificationinmultifrequencybandsinautismspectrumdisorderamultisitefunctionalmagneticresonanceimagingstudy AT jiaxize abnormalamygdalafunctionalconnectivityanddeeplearningclassificationinmultifrequencybandsinautismspectrumdisorderamultisitefunctionalmagneticresonanceimagingstudy |