Cargando…
Quantitative Radiomic Features From Computed Tomography Can Predict Pancreatic Cancer up to 36 Months Before Diagnosis
Pancreatic cancer is the third leading cause of cancer deaths among men and women in the United States. We aimed to detect early changes on computed tomography (CT) images associated with pancreatic ductal adenocarcinoma (PDAC) based on quantitative imaging features (QIFs) for patients with and with...
Autores principales: | Chen, Wansu, Zhou, Yichen, Asadpour, Vahid, Parker, Rex A., Puttock, Eric J., Lustigova, Eva, Wu, Bechien U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875961/ https://www.ncbi.nlm.nih.gov/pubmed/36434803 http://dx.doi.org/10.14309/ctg.0000000000000548 |
Ejemplares similares
-
Risk Prediction of Pancreatic Cancer in Patients With Abnormal Morphologic Findings Related to Chronic Pancreatitis: A Machine Learning Approach
por: Chen, Wansu, et al.
Publicado: (2022) -
Association of Glycated Hemoglobin Levels With Risk of Pancreatic Cancer
por: Wu, Bechien U., et al.
Publicado: (2020) -
Characterization of patients with advanced chronic pancreatitis using natural language processing of radiology reports
por: Xie, Fagen, et al.
Publicado: (2020) -
Factors Associated With Opioid Use in Patients Hospitalized for Acute Pancreatitis
por: Wu, Bechien U., et al.
Publicado: (2019) -
Automated placental abruption identification using semantic segmentation, quantitative features, SVM, ensemble and multi-path CNN()
por: Asadpour, Vahid, et al.
Publicado: (2023)