Cargando…
DeepMPF: deep learning framework for predicting drug–target interactions based on multi-modal representation with meta-path semantic analysis
BACKGROUND: Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant complex interactions present in the large size of genomic and chemical space...
Autores principales: | Ren, Zhong-Hao, You, Zhu-Hong, Zou, Quan, Yu, Chang-Qing, Ma, Yan-Fang, Guan, Yong-Jian, You, Hai-Ru, Wang, Xin-Fei, Pan, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876420/ https://www.ncbi.nlm.nih.gov/pubmed/36698208 http://dx.doi.org/10.1186/s12967-023-03876-3 |
Ejemplares similares
-
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
por: Peng, Shengwen, et al.
Publicado: (2016) -
Learning Document Semantic Representation with Hybrid Deep Belief Network
por: Yan, Yan, et al.
Publicado: (2015) -
Deep Semantic-Preserving Reconstruction Hashing for Unsupervised Cross-Modal Retrieval
por: Cheng, Shuli, et al.
Publicado: (2020) -
Deep multi-modal learning for joint linear representation of nonlinear dynamical systems
por: Qian, Shaodi, et al.
Publicado: (2022) -
Fake news detection: deep semantic representation with enhanced feature engineering
por: Samadi, Mohammadreza, et al.
Publicado: (2023)