Cargando…

A “best-in-class” systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression

We aimed to identify markers in blood (serum) to predict clinically relevant knee osteoarthritis (OA) progression defined as the combination of both joint structure and pain worsening over 48 months. A set of 15 serum proteomic markers corresponding to 13 total proteins reached an area under the rec...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Kaile, Li, Yi-Ju, Soderblom, Erik J., Reed, Alexander, Jain, Vaibhav, Sun, Shuming, Moseley, M. Arthur, Kraus, Virginia Byers
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876540/
https://www.ncbi.nlm.nih.gov/pubmed/36696492
http://dx.doi.org/10.1126/sciadv.abq5095
_version_ 1784878185107685376
author Zhou, Kaile
Li, Yi-Ju
Soderblom, Erik J.
Reed, Alexander
Jain, Vaibhav
Sun, Shuming
Moseley, M. Arthur
Kraus, Virginia Byers
author_facet Zhou, Kaile
Li, Yi-Ju
Soderblom, Erik J.
Reed, Alexander
Jain, Vaibhav
Sun, Shuming
Moseley, M. Arthur
Kraus, Virginia Byers
author_sort Zhou, Kaile
collection PubMed
description We aimed to identify markers in blood (serum) to predict clinically relevant knee osteoarthritis (OA) progression defined as the combination of both joint structure and pain worsening over 48 months. A set of 15 serum proteomic markers corresponding to 13 total proteins reached an area under the receiver operating characteristic curve (AUC) of 73% for distinguishing progressors from nonprogressors in a cohort of 596 individuals with knee OA. Prediction based on these blood markers was far better than traditional prediction based on baseline structural OA and pain severity (59%) or the current “best-in-class” biomarker for predicting OA progression, urinary carboxyl-terminal cross-linked telopeptide of type II collagen (58%). The generalizability of the marker set was confirmed in a second cohort of 86 individuals that yielded an AUC of 70% for distinguishing joint structural progressors. Blood is a readily accessible biospecimen whose analysis for these biomarkers could facilitate identification of individuals for clinical trial enrollment and those most in need of treatment.
format Online
Article
Text
id pubmed-9876540
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-98765402023-02-03 A “best-in-class” systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression Zhou, Kaile Li, Yi-Ju Soderblom, Erik J. Reed, Alexander Jain, Vaibhav Sun, Shuming Moseley, M. Arthur Kraus, Virginia Byers Sci Adv Biomedicine and Life Sciences We aimed to identify markers in blood (serum) to predict clinically relevant knee osteoarthritis (OA) progression defined as the combination of both joint structure and pain worsening over 48 months. A set of 15 serum proteomic markers corresponding to 13 total proteins reached an area under the receiver operating characteristic curve (AUC) of 73% for distinguishing progressors from nonprogressors in a cohort of 596 individuals with knee OA. Prediction based on these blood markers was far better than traditional prediction based on baseline structural OA and pain severity (59%) or the current “best-in-class” biomarker for predicting OA progression, urinary carboxyl-terminal cross-linked telopeptide of type II collagen (58%). The generalizability of the marker set was confirmed in a second cohort of 86 individuals that yielded an AUC of 70% for distinguishing joint structural progressors. Blood is a readily accessible biospecimen whose analysis for these biomarkers could facilitate identification of individuals for clinical trial enrollment and those most in need of treatment. American Association for the Advancement of Science 2023-01-25 /pmc/articles/PMC9876540/ /pubmed/36696492 http://dx.doi.org/10.1126/sciadv.abq5095 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Zhou, Kaile
Li, Yi-Ju
Soderblom, Erik J.
Reed, Alexander
Jain, Vaibhav
Sun, Shuming
Moseley, M. Arthur
Kraus, Virginia Byers
A “best-in-class” systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression
title A “best-in-class” systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression
title_full A “best-in-class” systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression
title_fullStr A “best-in-class” systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression
title_full_unstemmed A “best-in-class” systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression
title_short A “best-in-class” systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression
title_sort “best-in-class” systemic biomarker predictor of clinically relevant knee osteoarthritis structural and pain progression
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876540/
https://www.ncbi.nlm.nih.gov/pubmed/36696492
http://dx.doi.org/10.1126/sciadv.abq5095
work_keys_str_mv AT zhoukaile abestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT liyiju abestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT soderblomerikj abestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT reedalexander abestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT jainvaibhav abestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT sunshuming abestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT moseleymarthur abestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT krausvirginiabyers abestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT zhoukaile bestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT liyiju bestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT soderblomerikj bestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT reedalexander bestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT jainvaibhav bestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT sunshuming bestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT moseleymarthur bestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression
AT krausvirginiabyers bestinclasssystemicbiomarkerpredictorofclinicallyrelevantkneeosteoarthritisstructuralandpainprogression