Cargando…
Investigation on the mechanism of Shaoyao-Gancao Decoction in the treatment of gastric carcinoma based on network pharmacology and experimental verification
Background: Shaoyao-Gancao Decoction (SG-D) is a famous classical Chinese prescription that has been used in the treatment of numerous kinds of diseases. However, its mechanism of action in the treatment of Gastric carcinoma (GC) is not clear. Methods: The active ingredients and targets of SG-D were...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876642/ https://www.ncbi.nlm.nih.gov/pubmed/36602525 http://dx.doi.org/10.18632/aging.204465 |
Sumario: | Background: Shaoyao-Gancao Decoction (SG-D) is a famous classical Chinese prescription that has been used in the treatment of numerous kinds of diseases. However, its mechanism of action in the treatment of Gastric carcinoma (GC) is not clear. Methods: The active ingredients and targets of SG-D were screened using network pharmacology, and GC-related targets were retrieved through several databases. The protein-protein interaction network was then further constructed and GO and KEGG enrichment analysis were performed. Subsequently, molecular docking was carried out. Finally, we validated the results of the network pharmacology by performing in vitro cell experiments on CCK-8, apoptosis, cell cycle, platelet clone formation, and Western blotting with AGS cells. Results: Three key active ingredients and 8 core targets were screened through a network pharmacological analysis, and the results of the KEGG indicated that the PI3K/Akt and MAPK signaling pathways are critical signaling pathways for SG-D to treat GC. Experimental results revealed that SG-D was able to inhibit AGS cells proliferation, induce apoptosis and arrest the cell cycle, and reduce the ability of cell clone formation by regulating the PI3K/Akt and MAPK signaling pathways. Conclusions: Network pharmacology has shown that SG-D can act on multiple targets through multiple ingredients and treat GC by regulating multiple signaling pathways. In vitro cell experiments have also confirmed this, so as to provide a reference for subsequent related research. |
---|