Cargando…
Interpretable machine learning analysis to identify risk factors for diabetes using the anonymous living census data of Japan
PURPOSE: Diabetes mellitus causes various problems in our life. With the big data boom in our society, some risk factors for Diabetes must still exist. To identify new risk factors for diabetes in the big data society and explore further efficient use of big data, the non-objective-oriented census d...
Autores principales: | Jiang, Pei, Suzuki, Hiroyuki, Obi, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876749/ https://www.ncbi.nlm.nih.gov/pubmed/36718178 http://dx.doi.org/10.1007/s12553-023-00730-w |
Ejemplares similares
-
Relinquishing Anonymity in Living Donor Kidney Transplantation: Lessons Learned From the UK Policy for Anonymous Donors
por: Pronk, Mathilde C., et al.
Publicado: (2022) -
Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms
por: Tsao, Hsin-Yi, et al.
Publicado: (2018) -
Data-Driven Insights through Industrial Retrofitting: An Anonymized Dataset with Machine Learning Use Cases
por: Atzeni, Daniele, et al.
Publicado: (2023) -
On the Challenge of Interpreting Census Data: Insights from a Study of an Endangered Pinniped
por: Trillmich, Fritz, et al.
Publicado: (2016) -
First healthy baby by anonymous oocyte donation in Japan
por: Sugino, Norihiro
Publicado: (2018)