Cargando…
Predicting wind-driven spatial deposition through simulated color images using deep autoencoders
For centuries, scientists have observed nature to understand the laws that govern the physical world. The traditional process of turning observations into physical understanding is slow. Imperfect models are constructed and tested to explain relationships in data. Powerful new algorithms can enable...
Autores principales: | Fernández-Godino, M. Giselle, Lucas, Donald D., Kong, Qingkai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876895/ https://www.ncbi.nlm.nih.gov/pubmed/36697487 http://dx.doi.org/10.1038/s41598-023-28590-4 |
Ejemplares similares
-
Curiosity-Driven Variational Autoencoder for Deep Q Network
por: Han, Gao-Jie, et al.
Publicado: (2020) -
A wind-albedo-wind feedback driven by landscape evolution
por: Abell, Jordan T., et al.
Publicado: (2020) -
Flash Simulation at the LHC with Variational Autoencoders
por: Bucagu, Glenn
Publicado: (2021) -
Unsupervised Damage Detection for Offshore Jacket Wind Turbine Foundations Based on an Autoencoder Neural Network
por: Feijóo, Maria del Cisne, et al.
Publicado: (2021) -
Dynamics and vibration analyses of gearbox in wind turbine
por: Han, Qingkai, et al.
Publicado: (2016)