Cargando…
Stephania suberosa Forman extract synergistically inhibits ampicillin- and vancomycin-resistant Enterococcus faecium
Increasing antibiotic resistance in enterococci is among the most serious public health problems worldwide. The new naturally occurring antibacterial agents were explored. This study, therefore, investigated the antibacterial potential of Stephania suberosa extract (SSE) and its synergism with ampic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876979/ https://www.ncbi.nlm.nih.gov/pubmed/36712182 http://dx.doi.org/10.1016/j.sjbs.2023.103557 |
_version_ | 1784878284656345088 |
---|---|
author | Teethaisong, Yothin Chueakwon, Piyasiri Poolpol, Kulwara Ayamuang, Intu-orn Suknasang, Siriporn Apinundecha, Chittadech Eumkeb, Griangsak |
author_facet | Teethaisong, Yothin Chueakwon, Piyasiri Poolpol, Kulwara Ayamuang, Intu-orn Suknasang, Siriporn Apinundecha, Chittadech Eumkeb, Griangsak |
author_sort | Teethaisong, Yothin |
collection | PubMed |
description | Increasing antibiotic resistance in enterococci is among the most serious public health problems worldwide. The new naturally occurring antibacterial agents were explored. This study, therefore, investigated the antibacterial potential of Stephania suberosa extract (SSE) and its synergism with ampicillin (AMP) or vancomycin (VAN) against AMP- and VAN-resistant Enterococcus faecium. Disc diffusion assay revealed that SSE inhibited E. faecium DMST 12829, 12852, 12970, and a reference strain of Enterococcus faecalis ATCC 29,212 in a dose-dependent manner. The minimum inhibitory concentration (MIC) of SSE against all E. faecium isolates was 0.5 mg/mL. E. faecium DMST 12,829 and 12,852 were highly resistant to AMP, as indicated by high MIC values, and E. faecium DMST 12,829 and 12,970 were resistant to VAN. Enterococcus spp. were killed by SSE at the minimum bactericidal concentrations (MBCs) ranging from 0.5 to 4 mg/mL. Checkerboard determination showed that SSE plus AMP and SSE plus VAN combinations exhibited synergistic interaction against E. faecium isolates. The killing curve assay of E. faecium isolates confirmed the antibacterial and synergistic activities of combined agents by dramatically reducing the viable counts compared to a single agent. Scanning electron microscope elucidated the cell damage and abnormal cell division. Enterococcal proteases were also inhibited by SSE. These findings support that SSE could reverse the activity of AMP and VAN. Moreover, it can synergistically inhibit AMP- and VAN-resistant E. faecium. Our combined agents could be attractive candidates for developing new combinatorial agents to resurrect the efficacy of antibiotics for treating AMP- and VAN-resistant E. faecium infections. |
format | Online Article Text |
id | pubmed-9876979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-98769792023-01-27 Stephania suberosa Forman extract synergistically inhibits ampicillin- and vancomycin-resistant Enterococcus faecium Teethaisong, Yothin Chueakwon, Piyasiri Poolpol, Kulwara Ayamuang, Intu-orn Suknasang, Siriporn Apinundecha, Chittadech Eumkeb, Griangsak Saudi J Biol Sci Original Article Increasing antibiotic resistance in enterococci is among the most serious public health problems worldwide. The new naturally occurring antibacterial agents were explored. This study, therefore, investigated the antibacterial potential of Stephania suberosa extract (SSE) and its synergism with ampicillin (AMP) or vancomycin (VAN) against AMP- and VAN-resistant Enterococcus faecium. Disc diffusion assay revealed that SSE inhibited E. faecium DMST 12829, 12852, 12970, and a reference strain of Enterococcus faecalis ATCC 29,212 in a dose-dependent manner. The minimum inhibitory concentration (MIC) of SSE against all E. faecium isolates was 0.5 mg/mL. E. faecium DMST 12,829 and 12,852 were highly resistant to AMP, as indicated by high MIC values, and E. faecium DMST 12,829 and 12,970 were resistant to VAN. Enterococcus spp. were killed by SSE at the minimum bactericidal concentrations (MBCs) ranging from 0.5 to 4 mg/mL. Checkerboard determination showed that SSE plus AMP and SSE plus VAN combinations exhibited synergistic interaction against E. faecium isolates. The killing curve assay of E. faecium isolates confirmed the antibacterial and synergistic activities of combined agents by dramatically reducing the viable counts compared to a single agent. Scanning electron microscope elucidated the cell damage and abnormal cell division. Enterococcal proteases were also inhibited by SSE. These findings support that SSE could reverse the activity of AMP and VAN. Moreover, it can synergistically inhibit AMP- and VAN-resistant E. faecium. Our combined agents could be attractive candidates for developing new combinatorial agents to resurrect the efficacy of antibiotics for treating AMP- and VAN-resistant E. faecium infections. Elsevier 2023-02 2023-01-16 /pmc/articles/PMC9876979/ /pubmed/36712182 http://dx.doi.org/10.1016/j.sjbs.2023.103557 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Teethaisong, Yothin Chueakwon, Piyasiri Poolpol, Kulwara Ayamuang, Intu-orn Suknasang, Siriporn Apinundecha, Chittadech Eumkeb, Griangsak Stephania suberosa Forman extract synergistically inhibits ampicillin- and vancomycin-resistant Enterococcus faecium |
title | Stephania suberosa Forman extract synergistically inhibits ampicillin- and vancomycin-resistant Enterococcus faecium |
title_full | Stephania suberosa Forman extract synergistically inhibits ampicillin- and vancomycin-resistant Enterococcus faecium |
title_fullStr | Stephania suberosa Forman extract synergistically inhibits ampicillin- and vancomycin-resistant Enterococcus faecium |
title_full_unstemmed | Stephania suberosa Forman extract synergistically inhibits ampicillin- and vancomycin-resistant Enterococcus faecium |
title_short | Stephania suberosa Forman extract synergistically inhibits ampicillin- and vancomycin-resistant Enterococcus faecium |
title_sort | stephania suberosa forman extract synergistically inhibits ampicillin- and vancomycin-resistant enterococcus faecium |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876979/ https://www.ncbi.nlm.nih.gov/pubmed/36712182 http://dx.doi.org/10.1016/j.sjbs.2023.103557 |
work_keys_str_mv | AT teethaisongyothin stephaniasuberosaformanextractsynergisticallyinhibitsampicillinandvancomycinresistantenterococcusfaecium AT chueakwonpiyasiri stephaniasuberosaformanextractsynergisticallyinhibitsampicillinandvancomycinresistantenterococcusfaecium AT poolpolkulwara stephaniasuberosaformanextractsynergisticallyinhibitsampicillinandvancomycinresistantenterococcusfaecium AT ayamuangintuorn stephaniasuberosaformanextractsynergisticallyinhibitsampicillinandvancomycinresistantenterococcusfaecium AT suknasangsiriporn stephaniasuberosaformanextractsynergisticallyinhibitsampicillinandvancomycinresistantenterococcusfaecium AT apinundechachittadech stephaniasuberosaformanextractsynergisticallyinhibitsampicillinandvancomycinresistantenterococcusfaecium AT eumkebgriangsak stephaniasuberosaformanextractsynergisticallyinhibitsampicillinandvancomycinresistantenterococcusfaecium |