Cargando…

Spatiotemporal characterisation of microplastics in the coastal regions of Singapore

In the 21st century, plastic production continues to increase at an unprecedented rate, leading to the global issue of plastic pollution. In marine environments, a significant fraction of plastic litter are microplastics, which have a wide range of effects in marine ecosystems. Here, we examine the...

Descripción completa

Detalles Bibliográficos
Autores principales: Curren, Emily, Yew Leong, Sandric Chee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876982/
https://www.ncbi.nlm.nih.gov/pubmed/36711275
http://dx.doi.org/10.1016/j.heliyon.2023.e12961
Descripción
Sumario:In the 21st century, plastic production continues to increase at an unprecedented rate, leading to the global issue of plastic pollution. In marine environments, a significant fraction of plastic litter are microplastics, which have a wide range of effects in marine ecosystems. Here, we examine the spatiotemporal distribution of microplastics along the Johor and Singapore Straits, at surface and at depth. Generally, more microplastics were recorded from the surface waters across both Straits. Fragments were the dominant microplastic type (70%), followed by film (25%) and fiber (5%). A total of seven colours of microplastics were identified, with clear microplastics as the most abundant (64.9%), followed by black (25.1%) and blue (5.5%). Microplastics under 500 μm in size accounted for 98.9%, followed by particles 500–1000 μm (1%) and 1–5 mm (0.1%). During the monsoon season, the abundance of microplastics across various sites were observed to be > 1.1 times when compared to the inter-monsoon period. Rainfall was a closely related to the increased microplastic abundance across various sites in the Singapore Strait. This suggests that weather variations during climate change can play critical roles in modulating microplastic availability. Beach sediments facing the Singapore Strait recorded an abundance of 13.1 particles/kg, with polypropylene fragments, polyethylene pellets and thermoplastic polyester foam identified via Fourier transform infrared spectroscopy. Hence, it is crucial to profile the spatiotemporal variation of microplastic abundance in both the surface and in the water column to gain a better understanding of the threat caused by microplastic pollution in the coastal regions of Singapore.