Cargando…

From representations to servomechanisms to oscillators: my journey in the study of cognition

The study of comparative cognition bloomed in the 1970s and 1980s with a focus on representations in the heads of animals that undergird what animals can achieve. Even in action-packed domains such as navigation and spatial cognition, a focus on representations prevailed. In the 1990s, I suggested a...

Descripción completa

Detalles Bibliográficos
Autor principal: Cheng, Ken
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877067/
https://www.ncbi.nlm.nih.gov/pubmed/36029388
http://dx.doi.org/10.1007/s10071-022-01677-7
Descripción
Sumario:The study of comparative cognition bloomed in the 1970s and 1980s with a focus on representations in the heads of animals that undergird what animals can achieve. Even in action-packed domains such as navigation and spatial cognition, a focus on representations prevailed. In the 1990s, I suggested a conception of navigation in terms of navigational servomechanisms. A servomechanism can be said to aim for a goal, with deviations from the goal-directed path registering as an error. The error drives action to reduce the error in a negative-feedback loop. This loop, with the action reducing the very signal that drove action in the first place, is key to defining a servomechanism. Even though actions are crucial components of servomechanisms, my focus was on the representational component that encodes signals and evaluates errors. Recently, I modified and amplified this view in claiming that, in navigation, servomechanisms operate by modulating the performance of oscillators, endogenous units that produce periodic action. The pattern is found from bacteria travelling micrometres to sea turtles travelling thousands of kilometres. This pattern of servomechanisms working with oscillators is found in other realms of cognition and of life. I think that oscillators provide an effective way to organise an organism’s own activities while servomechanisms provide an effective means to adjust to the organism’s environment, including that of its own body.