Cargando…

Pseudomonas fluorescens imparts cadmium stress tolerance in Arabidopsis thaliana via induction of AtPCR2 gene expression

BACKGROUND: Cadmium is a non-essential, third largest heavy metal contaminant with long retention time that poses environmental hazards. It emanating majorly from industrial processes and phosphate fertilizers. Cadmium is effortlessly assimilated by plants and leads to yield loss. Henceforth, identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Reddy, Chinreddy Subramanyam, Cho, Min, Kaul, Tanushri, Joeng, Jin Tae, Kim, Kang Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877264/
https://www.ncbi.nlm.nih.gov/pubmed/36695935
http://dx.doi.org/10.1186/s43141-022-00457-7
Descripción
Sumario:BACKGROUND: Cadmium is a non-essential, third largest heavy metal contaminant with long retention time that poses environmental hazards. It emanating majorly from industrial processes and phosphate fertilizers. Cadmium is effortlessly assimilated by plants and leads to yield loss. Henceforth, identification of mechanisms to attenuate the heavy metal toxicity in crops is beneficial for enhanced yields. RESULTS: Beneficial soil bacteria have been known to combat both biotic and abiotic stress, thereby promoting plant growth. Amongst them, Pseudomonas fluorescens has been shown to enhance abiotic stress resistance in umpteen crops for instance maize and groundnut. Here, we investigated the role of P. fluorescens in conferring cadmium stress resistance in Arabidopsis thaliana. In silico analysis of PCR2 gene and promoter revealed the role, in cadmium stress resistance of A. thaliana. Real-time expression analysis employing qRT-PCR ratified the upregulation of AtPCR2 transcript under cadmium stress up to 6 folds. Total leaf (50%), biomass (23%), chlorophyll content (chlorophyll-a and b 40%, and 36 %) silique number (50%), and other growth parameters significantly improved on bacterial treatment of the 2mM Cd-stressed plants. CONCLUSION: Moreover, generated 35s-promoter driven AtPCR2 over-expressing transgenic lines that exhibited resistance to cadmium and other heavy metal stress. Taken together, a crucial interplay of P. fluorscens mediated enhanced expression of AtPCR2 significantly induced cadmium stress resistance in Arabidopsis plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43141-022-00457-7.