Cargando…
miRdisNET: Discovering microRNA biomarkers that are associated with diseases utilizing biological knowledge-based machine learning
During recent years, biological experiments and increasing evidence have shown that microRNAs play an important role in the diagnosis and treatment of human complex diseases. Therefore, to diagnose and treat human complex diseases, it is necessary to reveal the associations between a specific diseas...
Autores principales: | Jabeer, Amhar, Temiz, Mustafa, Bakir-Gungor, Burcu, Yousef, Malik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877296/ https://www.ncbi.nlm.nih.gov/pubmed/36712859 http://dx.doi.org/10.3389/fgene.2022.1076554 |
Ejemplares similares
-
Discovering Potential Taxonomic Biomarkers of Type 2 Diabetes From Human Gut Microbiota via Different Feature Selection Methods
por: Bakir-Gungor, Burcu, et al.
Publicado: (2021) -
miRcorrNet: machine learning-based integration of miRNA and mRNA expression profiles, combined with feature grouping and ranking
por: Yousef, Malik, et al.
Publicado: (2021) -
GeNetOntology: identifying affected gene ontology terms via grouping, scoring, and modeling of gene expression data utilizing biological knowledge-based machine learning
por: Ersoz, Nur Sebnem, et al.
Publicado: (2023) -
miRModuleNet: Detecting miRNA-mRNA Regulatory Modules
por: Yousef, Malik, et al.
Publicado: (2022) -
Recursive Cluster Elimination based Rank Function (SVM-RCE-R) implemented in KNIME
por: Yousef, Malik, et al.
Publicado: (2021)