Cargando…
Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally- printed and milled materials after surface treatment and artificial aging
OBJECTIVE: This study aimed to evaluate the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensionally (3D)-printed materials after various surface treatments and artificial aging compared with that bonded to computer-aided design/computer-aided manufacturing (CAD-CAM) polymethy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Association of Orthodontists
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877367/ https://www.ncbi.nlm.nih.gov/pubmed/36597666 http://dx.doi.org/10.4041/kjod22.098 |
_version_ | 1784878352887185408 |
---|---|
author | Biadsee, Ameer Rosner, Ofir Khalil, Carol Atanasova, Vanina Blushtein, Joel Levartovsky, Shifra |
author_facet | Biadsee, Ameer Rosner, Ofir Khalil, Carol Atanasova, Vanina Blushtein, Joel Levartovsky, Shifra |
author_sort | Biadsee, Ameer |
collection | PubMed |
description | OBJECTIVE: This study aimed to evaluate the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensionally (3D)-printed materials after various surface treatments and artificial aging compared with that bonded to computer-aided design/computer-aided manufacturing (CAD-CAM) polymethyl methacrylate (PMMA)-milled materials. METHODS: Eighty cylindrical specimens were 3D printed and divided into the following four subgroups (n = 20 each) according to the surface treatment and artificial aging procedure. Group A, sandblasted with 50 µm aluminum oxide particles (SA) and aging; group B, sandblasted with 30 µm silica-coated alumina particles (CO) and aging; group C, SA without aging; and group D, CO without aging. For the control group, 20 CAD-CAM PMMA-milled cylindrical specimens were sandblasted with SA and aged. The SBS was measured using a universal testing machine (0.25 mm/min), examined at ×2.5 magnification for failure mode classification, and statistically analyzed (p = 0.05). RESULTS: The retention obtained with the 3D-printed materials (groups A–D) was higher than that obtained with the PMMA-milled materials (control group). However, no significant difference was found between the study and control groups, except for group C (SA without aging), which showed significantly higher retention than the control group (PMMA-SA and thermocycling) (p = 0.037). Study groups A–D predominantly exhibited a cohesive specimen mode, indicating specimen fracture. CONCLUSIONS: Orthodontic brackets bonded to 3D-printed materials exhibit acceptable bonding strengths. However, 3D-printed materials are prone to cohesive failure, which may result in crown fractures. |
format | Online Article Text |
id | pubmed-9877367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Korean Association of Orthodontists |
record_format | MEDLINE/PubMed |
spelling | pubmed-98773672023-02-02 Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally- printed and milled materials after surface treatment and artificial aging Biadsee, Ameer Rosner, Ofir Khalil, Carol Atanasova, Vanina Blushtein, Joel Levartovsky, Shifra Korean J Orthod Original Article OBJECTIVE: This study aimed to evaluate the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensionally (3D)-printed materials after various surface treatments and artificial aging compared with that bonded to computer-aided design/computer-aided manufacturing (CAD-CAM) polymethyl methacrylate (PMMA)-milled materials. METHODS: Eighty cylindrical specimens were 3D printed and divided into the following four subgroups (n = 20 each) according to the surface treatment and artificial aging procedure. Group A, sandblasted with 50 µm aluminum oxide particles (SA) and aging; group B, sandblasted with 30 µm silica-coated alumina particles (CO) and aging; group C, SA without aging; and group D, CO without aging. For the control group, 20 CAD-CAM PMMA-milled cylindrical specimens were sandblasted with SA and aged. The SBS was measured using a universal testing machine (0.25 mm/min), examined at ×2.5 magnification for failure mode classification, and statistically analyzed (p = 0.05). RESULTS: The retention obtained with the 3D-printed materials (groups A–D) was higher than that obtained with the PMMA-milled materials (control group). However, no significant difference was found between the study and control groups, except for group C (SA without aging), which showed significantly higher retention than the control group (PMMA-SA and thermocycling) (p = 0.037). Study groups A–D predominantly exhibited a cohesive specimen mode, indicating specimen fracture. CONCLUSIONS: Orthodontic brackets bonded to 3D-printed materials exhibit acceptable bonding strengths. However, 3D-printed materials are prone to cohesive failure, which may result in crown fractures. Korean Association of Orthodontists 2023-01-25 2023-01-25 /pmc/articles/PMC9877367/ /pubmed/36597666 http://dx.doi.org/10.4041/kjod22.098 Text en © 2023 The Korean Association of Orthodontists. https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Biadsee, Ameer Rosner, Ofir Khalil, Carol Atanasova, Vanina Blushtein, Joel Levartovsky, Shifra Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally- printed and milled materials after surface treatment and artificial aging |
title | Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally- printed and milled materials after surface treatment and artificial aging |
title_full | Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally- printed and milled materials after surface treatment and artificial aging |
title_fullStr | Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally- printed and milled materials after surface treatment and artificial aging |
title_full_unstemmed | Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally- printed and milled materials after surface treatment and artificial aging |
title_short | Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally- printed and milled materials after surface treatment and artificial aging |
title_sort | comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally- printed and milled materials after surface treatment and artificial aging |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877367/ https://www.ncbi.nlm.nih.gov/pubmed/36597666 http://dx.doi.org/10.4041/kjod22.098 |
work_keys_str_mv | AT biadseeameer comparativeevaluationofshearbondstrengthoforthodonticbracketsbondedtothreedimensionallyprintedandmilledmaterialsaftersurfacetreatmentandartificialaging AT rosnerofir comparativeevaluationofshearbondstrengthoforthodonticbracketsbondedtothreedimensionallyprintedandmilledmaterialsaftersurfacetreatmentandartificialaging AT khalilcarol comparativeevaluationofshearbondstrengthoforthodonticbracketsbondedtothreedimensionallyprintedandmilledmaterialsaftersurfacetreatmentandartificialaging AT atanasovavanina comparativeevaluationofshearbondstrengthoforthodonticbracketsbondedtothreedimensionallyprintedandmilledmaterialsaftersurfacetreatmentandartificialaging AT blushteinjoel comparativeevaluationofshearbondstrengthoforthodonticbracketsbondedtothreedimensionallyprintedandmilledmaterialsaftersurfacetreatmentandartificialaging AT levartovskyshifra comparativeevaluationofshearbondstrengthoforthodonticbracketsbondedtothreedimensionallyprintedandmilledmaterialsaftersurfacetreatmentandartificialaging |