Cargando…
An ensemble of features based deep learning neural network for reduction of inappropriate atrial fibrillation detection in implantable cardiac monitors
BACKGROUND: Multiple studies have reported on classification of raw electrocardiograms (ECGs) using convolutional neural networks (CNNs). OBJECTIVE: We investigated an application-specific CNN using a custom ensemble of features designed based on characteristics of the ECG during atrial fibrillation...
Autores principales: | Sarkar, Shantanu, Majumder, Shubha, Koehler, Jodi L., Landman, Sean R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877397/ https://www.ncbi.nlm.nih.gov/pubmed/36713039 http://dx.doi.org/10.1016/j.hroo.2022.10.014 |
Ejemplares similares
-
Use of Oral Anticoagulation in a Real‐World Population With Device Detected Atrial Fibrillation
por: Kaplan, Rachel M., et al.
Publicado: (2020) -
Adapting detection sensitivity based on evidence of irregular sinus arrhythmia to improve atrial fibrillation detection in insertable cardiac monitors
por: Pürerfellner, Helmut, et al.
Publicado: (2018) -
Programmed inappropriate ICD ventricular defibrillation for cardioversion of persistent atrial fibrillation
por: Korantzopoulos, Panagiotis, et al.
Publicado: (2008) -
Repetitive non-reentrant ventriculo-atrial synchrony induced atrial fibrillation terminated with inappropriate shock
por: Smer, Aiman, et al.
Publicado: (2016) -
Multimorbidity, polypharmacy and inappropriate prescribing in elderly patients with atrial fibrillation: A report from the China Atrial Fibrillation Registry Study
por: Guo, Xueyuan, et al.
Publicado: (2022)