Cargando…
Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method
The COVID‐19 pandemic has highlighted delayed reporting as a significant impediment to effective disease surveillance and decision‐making. In the absence of timely data, statistical models which account for delays can be adopted to nowcast and forecast cases or deaths. We discuss the four key source...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877609/ https://www.ncbi.nlm.nih.gov/pubmed/36484382 http://dx.doi.org/10.1111/biom.13810 |
_version_ | 1784878394706493440 |
---|---|
author | Stoner, Oliver Halliday, Alba Economou, Theo |
author_facet | Stoner, Oliver Halliday, Alba Economou, Theo |
author_sort | Stoner, Oliver |
collection | PubMed |
description | The COVID‐19 pandemic has highlighted delayed reporting as a significant impediment to effective disease surveillance and decision‐making. In the absence of timely data, statistical models which account for delays can be adopted to nowcast and forecast cases or deaths. We discuss the four key sources of systematic and random variability in available data for COVID‐19 and other diseases, and critically evaluate current state‐of‐the‐art methods with respect to appropriately separating and capturing this variability. We propose a general hierarchical approach to correcting delayed reporting of COVID‐19 and apply this to daily English hospital deaths, resulting in a flexible prediction tool which could be used to better inform pandemic decision‐making. We compare this approach to competing models with respect to theoretical flexibility and quantitative metrics from a 15‐month rolling prediction experiment imitating a realistic operational scenario. Based on consistent leads in predictive accuracy, bias, and precision, we argue that this approach is an attractive option for correcting delayed reporting of COVID‐19 and future epidemics. |
format | Online Article Text |
id | pubmed-9877609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98776092023-01-26 Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method Stoner, Oliver Halliday, Alba Economou, Theo Biometrics Biometric Practice The COVID‐19 pandemic has highlighted delayed reporting as a significant impediment to effective disease surveillance and decision‐making. In the absence of timely data, statistical models which account for delays can be adopted to nowcast and forecast cases or deaths. We discuss the four key sources of systematic and random variability in available data for COVID‐19 and other diseases, and critically evaluate current state‐of‐the‐art methods with respect to appropriately separating and capturing this variability. We propose a general hierarchical approach to correcting delayed reporting of COVID‐19 and apply this to daily English hospital deaths, resulting in a flexible prediction tool which could be used to better inform pandemic decision‐making. We compare this approach to competing models with respect to theoretical flexibility and quantitative metrics from a 15‐month rolling prediction experiment imitating a realistic operational scenario. Based on consistent leads in predictive accuracy, bias, and precision, we argue that this approach is an attractive option for correcting delayed reporting of COVID‐19 and future epidemics. John Wiley and Sons Inc. 2022-12-27 /pmc/articles/PMC9877609/ /pubmed/36484382 http://dx.doi.org/10.1111/biom.13810 Text en © 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Biometric Practice Stoner, Oliver Halliday, Alba Economou, Theo Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method |
title | Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method |
title_full | Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method |
title_fullStr | Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method |
title_full_unstemmed | Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method |
title_short | Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method |
title_sort | correcting delayed reporting of covid‐19 using the generalized‐dirichlet‐multinomial method |
topic | Biometric Practice |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877609/ https://www.ncbi.nlm.nih.gov/pubmed/36484382 http://dx.doi.org/10.1111/biom.13810 |
work_keys_str_mv | AT stoneroliver correctingdelayedreportingofcovid19usingthegeneralizeddirichletmultinomialmethod AT hallidayalba correctingdelayedreportingofcovid19usingthegeneralizeddirichletmultinomialmethod AT economoutheo correctingdelayedreportingofcovid19usingthegeneralizeddirichletmultinomialmethod |