Cargando…
Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method
The COVID‐19 pandemic has highlighted delayed reporting as a significant impediment to effective disease surveillance and decision‐making. In the absence of timely data, statistical models which account for delays can be adopted to nowcast and forecast cases or deaths. We discuss the four key source...
Autores principales: | Stoner, Oliver, Halliday, Alba, Economou, Theo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877609/ https://www.ncbi.nlm.nih.gov/pubmed/36484382 http://dx.doi.org/10.1111/biom.13810 |
Ejemplares similares
-
Multivariate hierarchical frameworks for modeling delayed reporting in count data
por: Stoner, Oliver, et al.
Publicado: (2019) -
Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data
por: Jiang, Lingjing, et al.
Publicado: (2021) -
Inferring UK COVID‐19 fatal infection trajectories from daily mortality data: Were infections already in decline before the UK lockdowns?
por: Wood, Simon N.
Publicado: (2021) -
Computational Aspects of N-Mixture Models
por: Dennis, Emily B, et al.
Publicado: (2015) -
Estimating Absolute and Relative Case Fatality Ratios from Infectious Disease Surveillance Data
por: Reich, Nicholas G., et al.
Publicado: (2012)