Cargando…
Latent Dirichlet allocation topic modeling of free‐text responses exploring the negative impact of the early COVID‐19 pandemic on research in nursing
AIM: To derive latent topics from free‐text responses on the negative impact of the pandemic on research activities and determine similarities and differences in the resulting themes between academic‐based and clinical‐based researchers. METHODS: We performed a secondary analysis of free‐text respon...
Autores principales: | Inoue, Madoka, Fukahori, Hiroki, Matsubara, Manami, Yoshinaga, Naoki, Tohira, Hideo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877805/ https://www.ncbi.nlm.nih.gov/pubmed/36448530 http://dx.doi.org/10.1111/jjns.12520 |
Ejemplares similares
-
Propensity‐matched comparisons of factors negatively affecting research activities during the COVID‐19 pandemic between nursing researchers working in academic and clinical settings in Japan
por: Inoue, Madoka, et al.
Publicado: (2022) -
Context-Aware Latent Dirichlet Allocation for Topic Segmentation
por: Li, Wenbo, et al.
Publicado: (2020) -
A Topic Modeling for ALICE'S Log Messages using Latent Dirichlet Allocation
por: Prayurahong, Pattapon, et al.
Publicado: (2022) -
Latent Dirichlet Allocation modeling of environmental microbiomes
por: Kim, Anastasiia, et al.
Publicado: (2023) -
Identifying Topics and Evolutionary Trends of Literature on Brain Metastases Using Latent Dirichlet Allocation
por: Chen, Jiarong, et al.
Publicado: (2022)