Cargando…
Monitoring School Absenteeism for Influenza-Like Illness Surveillance: Systematic Review and Meta-analysis
BACKGROUND: Influenza causes considerable disease burden each year, particularly in children. Monitoring school absenteeism has long been proposed as a surveillance tool of influenza activity in the community, but the practice of school absenteeism could be varying, and the potential of such usage r...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878370/ https://www.ncbi.nlm.nih.gov/pubmed/36630159 http://dx.doi.org/10.2196/41329 |
Sumario: | BACKGROUND: Influenza causes considerable disease burden each year, particularly in children. Monitoring school absenteeism has long been proposed as a surveillance tool of influenza activity in the community, but the practice of school absenteeism could be varying, and the potential of such usage remains unclear. OBJECTIVE: The aim of this paper is to determine the potential of monitoring school absenteeism as a surveillance tool of influenza. METHODS: We conducted a systematic review of the published literature on the relationship between school absenteeism and influenza activity in the community. We categorized the types of school absenteeism and influenza activity in the community to determine the correlation between these data streams. We also extracted this correlation with different lags in community surveillance to determine the potential of using school absenteeism as a leading indicator of influenza activity. RESULTS: Among the 35 identified studies, 22 (63%), 12 (34%), and 8 (23%) studies monitored all-cause, illness-specific, and influenza-like illness (ILI)–specific absents, respectively, and 16 (46%) used quantitative approaches and provided 33 estimates on the temporal correlation between school absenteeism and influenza activity in the community. The pooled estimate of correlation between school absenteeism and community surveillance without lag, with 1-week lag, and with 2-week lag were 0.44 (95% CI 0.34, 0.53), 0.29 (95% CI 0.15, 0.42), and 0.21 (95% CI 0.11, 0.31), respectively. The correlation between influenza activity in the community and ILI-specific absenteeism was higher than that between influenza activity in community all-cause absenteeism. Among the 19 studies that used qualitative approaches, 15 (79%) concluded that school absenteeism was in concordance with, coincided with, or was associated with community surveillance. Of the 35 identified studies, only 6 (17%) attempted to predict influenza activity in the community from school absenteeism surveillance. CONCLUSIONS: There was a moderate correlation between school absenteeism and influenza activity in the community. The smaller correlation between school absenteeism and community surveillance with lag, compared to without lag, suggested that careful application was required to use school absenteeism as a leading indicator of influenza epidemics. ILI-specific absenteeism could monitor influenza activity more closely, but the required resource or school participation willingness may require careful consideration to weight against the associated costs. Further development is required to use and optimize the use of school absenteeism to predict influenza activity. In particular, the potential of using more advanced statistical models and validation of the predictions should be explored. |
---|