Cargando…
Center transfer for supervised domain adaptation
Domain adaptation (DA) is a popular strategy for pattern recognition and classification tasks. It leverages a large amount of data from the source domain to help train the model applied in the target domain. Supervised domain adaptation (SDA) approaches are desirable when only few labeled samples fr...
Autores principales: | Huang, Xiuyu, Zhou, Nan, Huang, Jian, Zhang, Huaidong, Pedrycz, Witold, Choi, Kup-Sze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878501/ https://www.ncbi.nlm.nih.gov/pubmed/36718382 http://dx.doi.org/10.1007/s10489-022-04414-2 |
Ejemplares similares
-
A Generalizable and Discriminative Learning Method for Deep EEG-Based Motor Imagery Classification
por: Huang, Xiuyu, et al.
Publicado: (2021) -
EEG-based vibrotactile evoked brain-computer interfaces system: A systematic review
por: Huang, Xiuyu, et al.
Publicado: (2022) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Domain Adaptation Based on Semi-Supervised Cross-Domain Mean Discriminative Analysis and Kernel Transfer Extreme Learning Machine
por: Li, Xinghai, et al.
Publicado: (2023) -
Domain adaptation for supervised integration of scRNA-seq data
por: Sun, Yutong, et al.
Publicado: (2023)