Cargando…
Big Data analytics for improved prediction of ligand binding and conformational selection
This research introduces new machine learning and deep learning approaches, collectively referred to as Big Data analytics techniques that are unique to address the protein conformational selection mechanism for protein:ligands complexes. The novel Big Data analytics techniques presented in this wor...
Autores principales: | Gupta, Shivangi, Baudry, Jerome, Menon, Vineetha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878559/ https://www.ncbi.nlm.nih.gov/pubmed/36710883 http://dx.doi.org/10.3389/fmolb.2022.953984 |
Ejemplares similares
-
Using Big Data Analytics to “Back Engineer” Protein Conformational Selection Mechanisms
por: Gupta, Shivangi, et al.
Publicado: (2022) -
An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models
por: Parks, Conor, et al.
Publicado: (2020) -
Enhancing response of a protein conformational switch by using two disordered ligand binding domains
por: Sekhon, Harsimranjit, et al.
Publicado: (2023) -
Antibody-Antigen Binding Interface Analysis in the Big Data Era
por: Reis, Pedro B. P. S., et al.
Publicado: (2022) -
Improving Small-Molecule Force Field Parameters in Ligand Binding Studies
por: Raniolo, Stefano, et al.
Publicado: (2021)