Cargando…
Prediction of the Critical Temperature of Superconductors Based on Two-Layer Feature Selection and the Optuna-Stacking Ensemble Learning Model
[Image: see text] The study of superconductors’ critical temperature (T(c)) has been a matter of interest. A method combining a two-layer feature selection (TL) and Optuna-Stacking ensemble learning model is proposed in the study for predicting T(c) from physicochemical components. Since most machin...
Autores principales: | Yu, Jiahao, Zhao, Yongman, Pan, Rongshun, Zhou, Xue, Wei, Zikai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878623/ https://www.ncbi.nlm.nih.gov/pubmed/36713747 http://dx.doi.org/10.1021/acsomega.2c06324 |
Ejemplares similares
-
Tree-Based Machine Learning Models with Optuna in Predicting Impedance Values for Circuit Analysis
por: Lai, Jung-Pin, et al.
Publicado: (2023) -
StackTHPred: Identifying Tumor-Homing Peptides through GBDT-Based Feature Selection with Stacking Ensemble Architecture
por: Guan, Jiahui, et al.
Publicado: (2023) -
Layered superconductors
por: Klemm, Richard A
Publicado: (2012) -
Critical temperatures T$_{c}$ estimated by Josephson-junction array model of layered high T$_{c}$ superconductors
por: Kawabata, C, et al.
Publicado: (1994) -
An R package for ensemble learning stacking
por: Nukui, Taichi, et al.
Publicado: (2023)