Cargando…
Image augmentation and automated measurement of endotracheal-tube-to-carina distance on chest radiographs in intensive care unit using a deep learning model with external validation
BACKGROUND: Chest radiographs are routinely performed in intensive care unit (ICU) to confirm the correct position of an endotracheal tube (ETT) relative to the carina. However, their interpretation is often challenging and requires substantial time and expertise. The aim of this study was to propos...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878756/ https://www.ncbi.nlm.nih.gov/pubmed/36698191 http://dx.doi.org/10.1186/s13054-023-04320-0 |
Sumario: | BACKGROUND: Chest radiographs are routinely performed in intensive care unit (ICU) to confirm the correct position of an endotracheal tube (ETT) relative to the carina. However, their interpretation is often challenging and requires substantial time and expertise. The aim of this study was to propose an externally validated deep learning model with uncertainty quantification and image segmentation for the automated assessment of ETT placement on ICU chest radiographs. METHODS: The CarinaNet model was constructed by applying transfer learning to the RetinaNet model using an internal dataset of ICU chest radiographs. The accuracy of the model in predicting the position of the ETT tip and carina was externally validated using a dataset of 200 images extracted from the MIMIC-CXR database. Uncertainty quantification was performed using the level of confidence in the ETT–carina distance prediction. Segmentation of the ETT was carried out using edge detection and pixel clustering. RESULTS: The interrater agreement was 0.18 cm for the ETT tip position, 0.58 cm for the carina position, and 0.60 cm for the ETT–carina distance. The mean absolute error of the model on the external test set was 0.51 cm for the ETT tip position prediction, 0.61 cm for the carina position prediction, and 0.89 cm for the ETT–carina distance prediction. The assessment of ETT placement was improved by complementing the human interpretation of chest radiographs with the CarinaNet model. CONCLUSIONS: The CarinaNet model is an efficient and generalizable deep learning algorithm for the automated assessment of ETT placement on ICU chest radiographs. Uncertainty quantification can bring the attention of intensivists to chest radiographs that require an experienced human interpretation. Image segmentation provides intensivists with chest radiographs that are quickly interpretable and allows them to immediately assess the validity of model predictions. The CarinaNet model is ready to be evaluated in clinical studies. GRAPHICAL ABSTRACT: [Image: see text] |
---|