Cargando…
MetaConClust - Unsupervised Binning of Metagenomics Data using Consensus Clustering
Background: Binning of metagenomic reads is an active area of research, and many unsupervised machine learning-based techniques have been used for taxonomic independent binning of metagenomic reads. Objective: It is important to find the optimum number of the cluster as well as develop an efficient...
Autores principales: | Sinha, Dipro, Sharma, Anu, Mishra, Dwijesh Chandra, Rai, Anil, Lal, Shashi Bhushan, Kumar, Sanjeev, Farooqi, Moh. Samir, Chaturvedi, Krishna Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9878838/ https://www.ncbi.nlm.nih.gov/pubmed/36778980 http://dx.doi.org/10.2174/1389202923666220413114659 |
Ejemplares similares
-
A Deep Clustering-based Novel Approach for Binning of Metagenomics Data
por: Madival, Sharanbasappa D., et al.
Publicado: (2022) -
CerealESTDb: A Comprehensive Resource for Abiotic Stress-Responsive Annotated ESTs With Predicted Genes, Gene Ontology, and Metabolic Pathways in Major Cereal Crops
por: Kumar, Sanjeev, et al.
Publicado: (2022) -
OGRE: Overlap Graph-based metagenomic Read clustEring
por: Balvert, Marleen, et al.
Publicado: (2020) -
ClustEHR: a tool for generating synthetic EHR data for unsupervised learning experiments.
por: Alexander, Nonie, et al.
Publicado: (2022) -
Protocol for refining metagenomic binning with BinSPreader
por: Ochkalova, Sofia, et al.
Publicado: (2023)