Cargando…
A clustering method for small scRNA-seq data based on subspace and weighted distance
BACKGROUND: Identifying the cell types using unsupervised methods is essential for scRNA-seq research. However, conventional similarity measures introduce challenges to single-cell data clustering because of the high dimensional, high noise, and high dropout. METHODS: We proposed a clustering method...
Autores principales: | Ning, Zilan, Dai, Zhijun, Zhang, Hongyan, Chen, Yuan, Yuan, Zheming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879162/ https://www.ncbi.nlm.nih.gov/pubmed/36710872 http://dx.doi.org/10.7717/peerj.14706 |
Ejemplares similares
-
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
Gene representation in scRNA-seq is correlated with common motifs at the 3′ end of transcripts
por: Li, Xinling, et al.
Publicado: (2023) -
Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data
por: Song, Jia, et al.
Publicado: (2020) -
Cell annotation using scRNA-seq data: A protein-protein interaction network approach
por: Senra, Daniela, et al.
Publicado: (2023) -
Development and validation of prognostic and diagnostic model for pancreatic ductal adenocarcinoma based on scRNA-seq and bulk-seq datasets
por: Chen, Kai, et al.
Publicado: (2021)