Cargando…
Identifying the necessary capacities for the adaptation of a diabetes phenotyping algorithm in countries of differing economic development status
BACKGROUND: In 2019, the World Health Organization recognised diabetes as a clinically and pathophysiologically heterogeneous set of related diseases. Little is currently known about the diabetes phenotypes in the population of low- and middle-income countries (LMICs), yet identifying their differen...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879185/ https://www.ncbi.nlm.nih.gov/pubmed/36692486 http://dx.doi.org/10.1080/16549716.2022.2157542 |
_version_ | 1784878638043234304 |
---|---|
author | Jackson-Morris, Angela Sembajwe, Rita Mustapha, Feisul Idzwan Chandran, Arunah Niyonsenga, Simon Pierre Gishoma, Crispin Onyango, Elizabeth Muriuki, Zachariah Dharamraj, Kavita Ellermeier, Nathan Nugent, Rachel Kazlauskaite, Rasa |
author_facet | Jackson-Morris, Angela Sembajwe, Rita Mustapha, Feisul Idzwan Chandran, Arunah Niyonsenga, Simon Pierre Gishoma, Crispin Onyango, Elizabeth Muriuki, Zachariah Dharamraj, Kavita Ellermeier, Nathan Nugent, Rachel Kazlauskaite, Rasa |
author_sort | Jackson-Morris, Angela |
collection | PubMed |
description | BACKGROUND: In 2019, the World Health Organization recognised diabetes as a clinically and pathophysiologically heterogeneous set of related diseases. Little is currently known about the diabetes phenotypes in the population of low- and middle-income countries (LMICs), yet identifying their different risks and aetiology has great potential to guide the development of more effective, tailored prevention and treatment. OBJECTIVES: This study reviewed the scope of diabetes datasets, health information ecosystems, and human resource capacity in four countries to assess whether a diabetes phenotyping algorithm (developed under a companion study) could be successfully applied. METHODS: The capacity assessment was undertaken with four countries: Trinidad, Malaysia, Kenya, and Rwanda. Diabetes programme staff completed a checklist of available diabetes data variables and then participated in semi-structured interviews about Health Information System (HIS) ecosystem conditions, diabetes programme context, and human resource needs. Descriptive analysis was undertaken. RESULTS: Only Malaysia collected the full set of the required diabetes data for the diabetes algorithm, although all countries did collect the required diabetes complication data. An HIS ecosystem existed in all settings, with variations in data hosting and sharing. All countries had access to HIS or ICT support, and epidemiologists or biostatisticians to support dataset preparation and algorithm application. CONCLUSIONS: Malaysia was found to be most ready to apply the phenotyping algorithm. A fundamental impediment in the other settings was the absence of several core diabetes data variables. Additionally, if countries digitise diabetes data collection and centralise diabetes data hosting, this will simplify dataset preparation for algorithm application. These issues reflect common LMIC health systems’ weaknesses in relation to diabetes care, and specifically highlight the importance of investment in improving diabetes data, which can guide population-tailored prevention and management approaches. |
format | Online Article Text |
id | pubmed-9879185 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-98791852023-01-27 Identifying the necessary capacities for the adaptation of a diabetes phenotyping algorithm in countries of differing economic development status Jackson-Morris, Angela Sembajwe, Rita Mustapha, Feisul Idzwan Chandran, Arunah Niyonsenga, Simon Pierre Gishoma, Crispin Onyango, Elizabeth Muriuki, Zachariah Dharamraj, Kavita Ellermeier, Nathan Nugent, Rachel Kazlauskaite, Rasa Glob Health Action Research Article BACKGROUND: In 2019, the World Health Organization recognised diabetes as a clinically and pathophysiologically heterogeneous set of related diseases. Little is currently known about the diabetes phenotypes in the population of low- and middle-income countries (LMICs), yet identifying their different risks and aetiology has great potential to guide the development of more effective, tailored prevention and treatment. OBJECTIVES: This study reviewed the scope of diabetes datasets, health information ecosystems, and human resource capacity in four countries to assess whether a diabetes phenotyping algorithm (developed under a companion study) could be successfully applied. METHODS: The capacity assessment was undertaken with four countries: Trinidad, Malaysia, Kenya, and Rwanda. Diabetes programme staff completed a checklist of available diabetes data variables and then participated in semi-structured interviews about Health Information System (HIS) ecosystem conditions, diabetes programme context, and human resource needs. Descriptive analysis was undertaken. RESULTS: Only Malaysia collected the full set of the required diabetes data for the diabetes algorithm, although all countries did collect the required diabetes complication data. An HIS ecosystem existed in all settings, with variations in data hosting and sharing. All countries had access to HIS or ICT support, and epidemiologists or biostatisticians to support dataset preparation and algorithm application. CONCLUSIONS: Malaysia was found to be most ready to apply the phenotyping algorithm. A fundamental impediment in the other settings was the absence of several core diabetes data variables. Additionally, if countries digitise diabetes data collection and centralise diabetes data hosting, this will simplify dataset preparation for algorithm application. These issues reflect common LMIC health systems’ weaknesses in relation to diabetes care, and specifically highlight the importance of investment in improving diabetes data, which can guide population-tailored prevention and management approaches. Taylor & Francis 2023-01-24 /pmc/articles/PMC9879185/ /pubmed/36692486 http://dx.doi.org/10.1080/16549716.2022.2157542 Text en © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Jackson-Morris, Angela Sembajwe, Rita Mustapha, Feisul Idzwan Chandran, Arunah Niyonsenga, Simon Pierre Gishoma, Crispin Onyango, Elizabeth Muriuki, Zachariah Dharamraj, Kavita Ellermeier, Nathan Nugent, Rachel Kazlauskaite, Rasa Identifying the necessary capacities for the adaptation of a diabetes phenotyping algorithm in countries of differing economic development status |
title | Identifying the necessary capacities for the adaptation of a diabetes phenotyping algorithm in countries of differing economic development status |
title_full | Identifying the necessary capacities for the adaptation of a diabetes phenotyping algorithm in countries of differing economic development status |
title_fullStr | Identifying the necessary capacities for the adaptation of a diabetes phenotyping algorithm in countries of differing economic development status |
title_full_unstemmed | Identifying the necessary capacities for the adaptation of a diabetes phenotyping algorithm in countries of differing economic development status |
title_short | Identifying the necessary capacities for the adaptation of a diabetes phenotyping algorithm in countries of differing economic development status |
title_sort | identifying the necessary capacities for the adaptation of a diabetes phenotyping algorithm in countries of differing economic development status |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879185/ https://www.ncbi.nlm.nih.gov/pubmed/36692486 http://dx.doi.org/10.1080/16549716.2022.2157542 |
work_keys_str_mv | AT jacksonmorrisangela identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT sembajwerita identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT mustaphafeisulidzwan identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT chandranarunah identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT niyonsengasimonpierre identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT gishomacrispin identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT onyangoelizabeth identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT muriukizachariah identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT dharamrajkavita identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT ellermeiernathan identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT nugentrachel identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus AT kazlauskaiterasa identifyingthenecessarycapacitiesfortheadaptationofadiabetesphenotypingalgorithmincountriesofdifferingeconomicdevelopmentstatus |