Cargando…
Stability of some generalized fractional differential equations in the sense of Ulam–Hyers–Rassias
In this paper, we investigate the existence and uniqueness of fractional differential equations (FDEs) by using the fixed-point theory (FPT). We discuss also the Ulam–Hyers–Rassias (UHR) stability of some generalized FDEs according to some classical mathematical techniques and the FPT. Finally, two...
Autores principales: | Makhlouf, Abdellatif Ben, El-hady, El-sayed, Arfaoui, Hassen, Boulaaras, Salah, Mchiri, Lassaad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879255/ https://www.ncbi.nlm.nih.gov/pubmed/36718224 http://dx.doi.org/10.1186/s13661-023-01695-5 |
Ejemplares similares
-
Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis
por: Jung, Soon-Mo
Publicado: (2011) -
Generalized β−Hyers–Ulam–Rassias Stability of Impulsive Difference Equations
por: Almalki, Yahya, et al.
Publicado: (2022) -
Inclusions in a Single Variable in Ultrametric Spaces and Hyers-Ulam Stability
por: Piszczek, Magdalena
Publicado: (2013) -
Ulam-Hyers stability of tuberculosis and COVID-19 co-infection model under Atangana-Baleanu fractal-fractional operator
por: Selvam, Arunachalam, et al.
Publicado: (2023) -
Some results for a class of two-dimensional fractional hyperbolic differential systems with time delay
por: Arfaoui, Hassen, et al.
Publicado: (2021)