Cargando…
Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques
Dengue fever is a vector-borne disease affecting millions yearly, mostly in tropical and subtropical countries. Driven mainly by social and environmental factors, dengue incidence and geographical expansion have increased in recent decades. Therefore, understanding how climate variables drive dengue...
Autores principales: | Barboza, Luis A., Chou-Chen, Shu-Wei, Vásquez, Paola, García, Yury E., Calvo, Juan G., Hidalgo, Hugo G., Sanchez, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879398/ https://www.ncbi.nlm.nih.gov/pubmed/36638136 http://dx.doi.org/10.1371/journal.pntd.0011047 |
Ejemplares similares
-
Common patterns between dengue cases, climate, and local environmental variables in Costa Rica: A wavelet approach
por: García, Yury E., et al.
Publicado: (2023) -
Mathematical and statistical models for the control of mosquito-borne diseases: the experience of Costa Rica
por: Vásquez, Paola, et al.
Publicado: (2022) -
A multilayer network model of Covid-19: Implications in public health policy in Costa Rica
por: Sanchez, Fabio, et al.
Publicado: (2022) -
The Role of Mobility and Sanitary Measures on the Delay of Community Transmission of COVID-19 in Costa Rica
por: Barboza, Luis A., et al.
Publicado: (2021) -
Projecting the impact of Covid-19 variants and vaccination strategies in disease transmission using a multilayer network model in Costa Rica
por: García, Yury E., et al.
Publicado: (2022)