Cargando…
Stair-climbing wheelchair proven to maintain user’s body stability based on AnyBody musculoskeletal model and finite element analysis
The electric stair-climbing wheelchair is a beneficial mobile assistance device for older adults and disabled persons with poor walking ability, as it reduces the daily walking and climbing burden. In this paper, 11 older adults were tested when using a stair-climbing wheelchair in three environment...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879436/ https://www.ncbi.nlm.nih.gov/pubmed/36701312 http://dx.doi.org/10.1371/journal.pone.0279478 |
_version_ | 1784878687903023104 |
---|---|
author | Zhu, Yancong Li, Haojie Lyu, Shaojun Shan, Xinying Jan, Yih-Kuen Ma, Fengling |
author_facet | Zhu, Yancong Li, Haojie Lyu, Shaojun Shan, Xinying Jan, Yih-Kuen Ma, Fengling |
author_sort | Zhu, Yancong |
collection | PubMed |
description | The electric stair-climbing wheelchair is a beneficial mobile assistance device for older adults and disabled persons with poor walking ability, as it reduces the daily walking and climbing burden. In this paper, 11 older adults were tested when using a stair-climbing wheelchair in three environments: flat ground, slopes, and stairs. The kinematic and dynamic parameters of the lower limb joints were simulated by AnyBody 7.2 human model simulation software using Vicon 3D infrared motion capture, a 3D force table, and analyzed by ANSYS 19.2 Workbench. The joint force, joint moment, and muscle strength did not change significantly under the three environments when using the wheelchair. Through finite element analysis of the mechanical properties of the human body, when using the wheelchair, no significant differences in the overall stress distributions of the fifth lumbar spine, hip bone, or femur were found among the three environments, no significant differences in deformation and displacement were found, and the stress distribution was relatively stable. Therefore, the human body is stable enough to use the electric stair-climbing wheelchair in the three test environments, all of which will be commonly encountered in daily life. |
format | Online Article Text |
id | pubmed-9879436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-98794362023-01-27 Stair-climbing wheelchair proven to maintain user’s body stability based on AnyBody musculoskeletal model and finite element analysis Zhu, Yancong Li, Haojie Lyu, Shaojun Shan, Xinying Jan, Yih-Kuen Ma, Fengling PLoS One Research Article The electric stair-climbing wheelchair is a beneficial mobile assistance device for older adults and disabled persons with poor walking ability, as it reduces the daily walking and climbing burden. In this paper, 11 older adults were tested when using a stair-climbing wheelchair in three environments: flat ground, slopes, and stairs. The kinematic and dynamic parameters of the lower limb joints were simulated by AnyBody 7.2 human model simulation software using Vicon 3D infrared motion capture, a 3D force table, and analyzed by ANSYS 19.2 Workbench. The joint force, joint moment, and muscle strength did not change significantly under the three environments when using the wheelchair. Through finite element analysis of the mechanical properties of the human body, when using the wheelchair, no significant differences in the overall stress distributions of the fifth lumbar spine, hip bone, or femur were found among the three environments, no significant differences in deformation and displacement were found, and the stress distribution was relatively stable. Therefore, the human body is stable enough to use the electric stair-climbing wheelchair in the three test environments, all of which will be commonly encountered in daily life. Public Library of Science 2023-01-26 /pmc/articles/PMC9879436/ /pubmed/36701312 http://dx.doi.org/10.1371/journal.pone.0279478 Text en © 2023 Zhu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhu, Yancong Li, Haojie Lyu, Shaojun Shan, Xinying Jan, Yih-Kuen Ma, Fengling Stair-climbing wheelchair proven to maintain user’s body stability based on AnyBody musculoskeletal model and finite element analysis |
title | Stair-climbing wheelchair proven to maintain user’s body stability based on AnyBody musculoskeletal model and finite element analysis |
title_full | Stair-climbing wheelchair proven to maintain user’s body stability based on AnyBody musculoskeletal model and finite element analysis |
title_fullStr | Stair-climbing wheelchair proven to maintain user’s body stability based on AnyBody musculoskeletal model and finite element analysis |
title_full_unstemmed | Stair-climbing wheelchair proven to maintain user’s body stability based on AnyBody musculoskeletal model and finite element analysis |
title_short | Stair-climbing wheelchair proven to maintain user’s body stability based on AnyBody musculoskeletal model and finite element analysis |
title_sort | stair-climbing wheelchair proven to maintain user’s body stability based on anybody musculoskeletal model and finite element analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879436/ https://www.ncbi.nlm.nih.gov/pubmed/36701312 http://dx.doi.org/10.1371/journal.pone.0279478 |
work_keys_str_mv | AT zhuyancong stairclimbingwheelchairproventomaintainusersbodystabilitybasedonanybodymusculoskeletalmodelandfiniteelementanalysis AT lihaojie stairclimbingwheelchairproventomaintainusersbodystabilitybasedonanybodymusculoskeletalmodelandfiniteelementanalysis AT lyushaojun stairclimbingwheelchairproventomaintainusersbodystabilitybasedonanybodymusculoskeletalmodelandfiniteelementanalysis AT shanxinying stairclimbingwheelchairproventomaintainusersbodystabilitybasedonanybodymusculoskeletalmodelandfiniteelementanalysis AT janyihkuen stairclimbingwheelchairproventomaintainusersbodystabilitybasedonanybodymusculoskeletalmodelandfiniteelementanalysis AT mafengling stairclimbingwheelchairproventomaintainusersbodystabilitybasedonanybodymusculoskeletalmodelandfiniteelementanalysis |