Cargando…

Pod-based e-liquids impair human vascular endothelial cell function

Pod-based electronic (e-) cigarettes more efficiently deliver nicotine using a protonated formulation. The cardiovascular effects associated with these devices are poorly understood. We evaluated whether pod-based e-liquids and their individual components impair endothelial cell function. We isolate...

Descripción completa

Detalles Bibliográficos
Autores principales: Majid, Sana, Weisbrod, Robert M., Fetterman, Jessica L., Keith, Rachel J., Rizvi, Syed H. M., Zhou, Yuxiang, Behrooz, Leili, Robertson, Rose Marie, Bhatnagar, Aruni, Conklin, Daniel J., Hamburg, Naomi M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879485/
https://www.ncbi.nlm.nih.gov/pubmed/36701344
http://dx.doi.org/10.1371/journal.pone.0280674
Descripción
Sumario:Pod-based electronic (e-) cigarettes more efficiently deliver nicotine using a protonated formulation. The cardiovascular effects associated with these devices are poorly understood. We evaluated whether pod-based e-liquids and their individual components impair endothelial cell function. We isolated endothelial cells from people who are pod users (n = 10), tobacco never users (n = 7), and combustible cigarette users (n = 6). After a structured use, pod users had lower acetylcholine-mediated endothelial nitric oxide synthase (eNOS) activation compared with never users and was similar to levels from combustible cigarette users (overall P = 0.008, P = 0.01 pod vs never; P = 0.96 pod vs combustible cigarette). The effects of pod-based e-cigarettes and their constituents on vascular cell function were further studied in commercially available human aortic endothelial cells (HAECs) incubated with flavored JUUL e-liquids or propylene glycol (PG):vegetable glycerol (VG) at 30:70 ratio with or without 60 mg/mL nicotine salt for 90 min. A progressive increase in cell death with JUUL e-liquid exposure was observed across 0.0001–1% dilutions; PG:VG vehicle with and without nicotine salt induced cell death. A23187-stimulated nitric oxide production was decreased with all JUUL e-liquid flavors, PG:VG and nicotine salt exposures. Aerosols generated by JUUL e-liquid heating similarly decreased stimulated nitric oxide production. Only mint flavored e-liquids increased inflammation and menthol flavored e-liquids enhanced oxidative stress in HAECs. In conclusion, pod e-liquids and their individual components appear to impair endothelial cell function. These findings indicate the potential harm of pod-based devices on endothelial cell function and thus may be relevant to cardiovascular injury in pod type e-cigarette users.