Cargando…
A dual graph neural network for drug–drug interactions prediction based on molecular structure and interactions
Expressive molecular representation plays critical roles in researching drug design, while effective methods are beneficial to learning molecular representations and solving related problems in drug discovery, especially for drug-drug interactions (DDIs) prediction. Recently, a lot of work has been...
Autores principales: | Ma, Mei, Lei, Xiujuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879511/ https://www.ncbi.nlm.nih.gov/pubmed/36701288 http://dx.doi.org/10.1371/journal.pcbi.1010812 |
Ejemplares similares
-
Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs
por: Feng, Yue-Hua, et al.
Publicado: (2022) -
SmileGNN: Drug–Drug Interaction Prediction Based on the SMILES and Graph Neural Network
por: Han, Xueting, et al.
Publicado: (2022) -
Multi-type feature fusion based on graph neural network for drug-drug interaction prediction
por: He, Changxiang, et al.
Publicado: (2022) -
Prediction of drug-drug interaction events using graph neural networks based feature extraction
por: Al-Rabeah, Mohammad Hussain, et al.
Publicado: (2022) -
Learning size-adaptive molecular substructures for explainable drug–drug interaction prediction by substructure-aware graph neural network
por: Yang, Ziduo, et al.
Publicado: (2022)