Cargando…
Sim-to-real via latent prediction: Transferring visual non-prehensile manipulation policies
Reinforcement Learning has been shown to have a great potential for robotics. It demonstrated the capability to solve complex manipulation and locomotion tasks, even by learning end-to-end policies that operate directly on visual input, removing the need for custom perception systems. However, for p...
Autores principales: | Rizzardo, Carlo, Chen, Fei, Caldwell, Darwin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879568/ https://www.ncbi.nlm.nih.gov/pubmed/36714802 http://dx.doi.org/10.3389/frobt.2022.1067502 |
Ejemplares similares
-
Proposal and Evaluation of Visual Haptics for Manipulation of Remote Machine System
por: Haruna, Masaki, et al.
Publicado: (2020) -
Intelligent Spacecraft Visual GNC Architecture With the State-Of-the-Art AI Components for On-Orbit Manipulation
por: Hao, Zhou, et al.
Publicado: (2021) -
AR DriveSim: An Immersive Driving Simulator for Augmented Reality Head-Up Display Research
por: Gabbard, Joseph L., et al.
Publicado: (2019) -
A Recurrent Neural-Network-Based Real-Time Dynamic Model for Soft Continuum Manipulators
por: Tariverdi, Abbas, et al.
Publicado: (2021) -
Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks
por: Melnik, Andrew, et al.
Publicado: (2021)