Cargando…

A Boolean algebra for genetic variants

MOTIVATION: Beyond identifying genetic variants, we introduce a set of Boolean relations, which allows for a comprehensive classification of the relations of every pair of variants by taking all minimal alignments into account. We present an efficient algorithm to compute these relations, including...

Descripción completa

Detalles Bibliográficos
Autores principales: Vis, Jonathan K, Santcroos, Mark A, Kosters, Walter A, Laros, Jeroen F J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879725/
https://www.ncbi.nlm.nih.gov/pubmed/36594541
http://dx.doi.org/10.1093/bioinformatics/btad001
Descripción
Sumario:MOTIVATION: Beyond identifying genetic variants, we introduce a set of Boolean relations, which allows for a comprehensive classification of the relations of every pair of variants by taking all minimal alignments into account. We present an efficient algorithm to compute these relations, including a novel way of efficiently computing all minimal alignments within the best theoretical complexity bounds. RESULTS: We show that these relations are common, and many non-trivial, for variants of the CFTR gene in dbSNP. Ultimately, we present an approach for the storing and indexing of variants in the context of a database that enables efficient querying for all these relations. AVAILABILITY AND IMPLEMENTATION: A Python implementation is available at https://github.com/mutalyzer/algebra/tree/v0.2.0 as well as an interface at https://mutalyzer.nl/algebra.