Cargando…
Feature preserving mesh network for semantic segmentation of retinal vasculature to support ophthalmic disease analysis
INTRODUCTION: Ophthalmic diseases are approaching an alarming count across the globe. Typically, ophthalmologists depend on manual methods for the analysis of different ophthalmic diseases such as glaucoma, Sickle cell retinopathy (SCR), diabetic retinopathy, and hypertensive retinopathy. All these...
Autores principales: | Imran, Syed Muhammad Ali, Saleem, Muhammad Waqas, Hameed, Muhammad Talha, Hussain, Abida, Naqvi, Rizwan Ali, Lee, Seung Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880050/ https://www.ncbi.nlm.nih.gov/pubmed/36714120 http://dx.doi.org/10.3389/fmed.2022.1040562 |
Ejemplares similares
-
CardioNet: Automatic Semantic Segmentation to Calculate the Cardiothoracic Ratio for Cardiomegaly and Other Chest Diseases
por: Jafar, Abbas, et al.
Publicado: (2022) -
Sensor Data Fusion Based on Deep Learning for Computer Vision Applications and Medical Applications
por: Naqvi, Rizwan Ali, et al.
Publicado: (2022) -
Robust Method for Semantic Segmentation of Whole-Slide Blood Cell Microscopic Images
por: Shahzad, Muhammad, et al.
Publicado: (2020) -
Multiloss Function Based Deep Convolutional Neural Network for Segmentation of Retinal Vasculature into Arterioles and Venules
por: Badawi, Sufian A., et al.
Publicado: (2019) -
How deep learning is empowering semantic segmentation: Traditional and deep learning techniques for semantic segmentation: A comparison
por: Sehar, Uroosa, et al.
Publicado: (2022)