Cargando…

CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX

Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvir...

Descripción completa

Detalles Bibliográficos
Autores principales: Whelan, Jack T., Singaravelu, Ragunath, Wang, Fuan, Pelin, Adrian, Tamming, Levi A., Pugliese, Giuseppe, Martin, Nikolas T., Crupi, Mathieu J. F., Petryk, Julia, Austin, Bradley, He, Xiaohong, Marius, Ricardo, Duong, Jessie, Jones, Carter, Fekete, Emily E. F., Alluqmani, Nouf, Chen, Andrew, Boulton, Stephen, Huh, Michael S., Tang, Matt Y., Taha, Zaid, Scut, Elena, Diallo, Jean-Simon, Azad, Taha, Lichty, Brian D., Ilkow, Carolina S., Bell, John C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880309/
https://www.ncbi.nlm.nih.gov/pubmed/36713447
http://dx.doi.org/10.3389/fimmu.2022.1050250
_version_ 1784878879479955456
author Whelan, Jack T.
Singaravelu, Ragunath
Wang, Fuan
Pelin, Adrian
Tamming, Levi A.
Pugliese, Giuseppe
Martin, Nikolas T.
Crupi, Mathieu J. F.
Petryk, Julia
Austin, Bradley
He, Xiaohong
Marius, Ricardo
Duong, Jessie
Jones, Carter
Fekete, Emily E. F.
Alluqmani, Nouf
Chen, Andrew
Boulton, Stephen
Huh, Michael S.
Tang, Matt Y.
Taha, Zaid
Scut, Elena
Diallo, Jean-Simon
Azad, Taha
Lichty, Brian D.
Ilkow, Carolina S.
Bell, John C.
author_facet Whelan, Jack T.
Singaravelu, Ragunath
Wang, Fuan
Pelin, Adrian
Tamming, Levi A.
Pugliese, Giuseppe
Martin, Nikolas T.
Crupi, Mathieu J. F.
Petryk, Julia
Austin, Bradley
He, Xiaohong
Marius, Ricardo
Duong, Jessie
Jones, Carter
Fekete, Emily E. F.
Alluqmani, Nouf
Chen, Andrew
Boulton, Stephen
Huh, Michael S.
Tang, Matt Y.
Taha, Zaid
Scut, Elena
Diallo, Jean-Simon
Azad, Taha
Lichty, Brian D.
Ilkow, Carolina S.
Bell, John C.
author_sort Whelan, Jack T.
collection PubMed
description Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome. Herein, we describe a simple, cost-effective approach to rapidly generate and purify a poxvirus vector with multiple transgenes. By utilizing a simple, modular CRISPR/Cas9 assisted-recombinant vaccinia virus engineering (CARVE) system, we demonstrate generation of a recombinant vaccinia virus expressing three distinct transgenes at three different loci in less than 1 week. We apply CARVE to rapidly generate a novel immunogenic vaccinia virus vector, which expresses a bacterial diadenylate cyclase. This novel vector, STINGPOX, produces cyclic di-AMP, a STING agonist, which drives IFN signaling critical to the anti-tumor immune response. We demonstrate that STINGPOX can drive IFN signaling in primary human cancer tissue explants. Using an immunocompetent murine colon cancer model, we demonstrate that intratumoral administration of STINGPOX in combination with checkpoint inhibitor, anti-PD1, promotes survival post-tumour challenge. These data demonstrate the utility of CRISPR/Cas9 in the rapid arming of poxvirus vectors with therapeutic payloads to create novel immunotherapies.
format Online
Article
Text
id pubmed-9880309
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98803092023-01-28 CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX Whelan, Jack T. Singaravelu, Ragunath Wang, Fuan Pelin, Adrian Tamming, Levi A. Pugliese, Giuseppe Martin, Nikolas T. Crupi, Mathieu J. F. Petryk, Julia Austin, Bradley He, Xiaohong Marius, Ricardo Duong, Jessie Jones, Carter Fekete, Emily E. F. Alluqmani, Nouf Chen, Andrew Boulton, Stephen Huh, Michael S. Tang, Matt Y. Taha, Zaid Scut, Elena Diallo, Jean-Simon Azad, Taha Lichty, Brian D. Ilkow, Carolina S. Bell, John C. Front Immunol Immunology Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome. Herein, we describe a simple, cost-effective approach to rapidly generate and purify a poxvirus vector with multiple transgenes. By utilizing a simple, modular CRISPR/Cas9 assisted-recombinant vaccinia virus engineering (CARVE) system, we demonstrate generation of a recombinant vaccinia virus expressing three distinct transgenes at three different loci in less than 1 week. We apply CARVE to rapidly generate a novel immunogenic vaccinia virus vector, which expresses a bacterial diadenylate cyclase. This novel vector, STINGPOX, produces cyclic di-AMP, a STING agonist, which drives IFN signaling critical to the anti-tumor immune response. We demonstrate that STINGPOX can drive IFN signaling in primary human cancer tissue explants. Using an immunocompetent murine colon cancer model, we demonstrate that intratumoral administration of STINGPOX in combination with checkpoint inhibitor, anti-PD1, promotes survival post-tumour challenge. These data demonstrate the utility of CRISPR/Cas9 in the rapid arming of poxvirus vectors with therapeutic payloads to create novel immunotherapies. Frontiers Media S.A. 2023-01-13 /pmc/articles/PMC9880309/ /pubmed/36713447 http://dx.doi.org/10.3389/fimmu.2022.1050250 Text en Copyright © 2023 Whelan, Singaravelu, Wang, Pelin, Tamming, Pugliese, Martin, Crupi, Petryk, Austin, He, Marius, Duong, Jones, Fekete, Alluqmani, Chen, Boulton, Huh, Tang, Taha, Scut, Diallo, Azad, Lichty, Ilkow and Bell https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Whelan, Jack T.
Singaravelu, Ragunath
Wang, Fuan
Pelin, Adrian
Tamming, Levi A.
Pugliese, Giuseppe
Martin, Nikolas T.
Crupi, Mathieu J. F.
Petryk, Julia
Austin, Bradley
He, Xiaohong
Marius, Ricardo
Duong, Jessie
Jones, Carter
Fekete, Emily E. F.
Alluqmani, Nouf
Chen, Andrew
Boulton, Stephen
Huh, Michael S.
Tang, Matt Y.
Taha, Zaid
Scut, Elena
Diallo, Jean-Simon
Azad, Taha
Lichty, Brian D.
Ilkow, Carolina S.
Bell, John C.
CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_full CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_fullStr CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_full_unstemmed CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_short CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
title_sort crispr-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic stingpox
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880309/
https://www.ncbi.nlm.nih.gov/pubmed/36713447
http://dx.doi.org/10.3389/fimmu.2022.1050250
work_keys_str_mv AT whelanjackt crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT singaraveluragunath crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT wangfuan crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT pelinadrian crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT tamminglevia crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT pugliesegiuseppe crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT martinnikolast crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT crupimathieujf crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT petrykjulia crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT austinbradley crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT hexiaohong crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT mariusricardo crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT duongjessie crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT jonescarter crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT feketeemilyef crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT alluqmaninouf crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT chenandrew crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT boultonstephen crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT huhmichaels crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT tangmatty crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT tahazaid crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT scutelena crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT diallojeansimon crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT azadtaha crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT lichtybriand crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT ilkowcarolinas crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox
AT belljohnc crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox