Cargando…
CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX
Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvir...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880309/ https://www.ncbi.nlm.nih.gov/pubmed/36713447 http://dx.doi.org/10.3389/fimmu.2022.1050250 |
_version_ | 1784878879479955456 |
---|---|
author | Whelan, Jack T. Singaravelu, Ragunath Wang, Fuan Pelin, Adrian Tamming, Levi A. Pugliese, Giuseppe Martin, Nikolas T. Crupi, Mathieu J. F. Petryk, Julia Austin, Bradley He, Xiaohong Marius, Ricardo Duong, Jessie Jones, Carter Fekete, Emily E. F. Alluqmani, Nouf Chen, Andrew Boulton, Stephen Huh, Michael S. Tang, Matt Y. Taha, Zaid Scut, Elena Diallo, Jean-Simon Azad, Taha Lichty, Brian D. Ilkow, Carolina S. Bell, John C. |
author_facet | Whelan, Jack T. Singaravelu, Ragunath Wang, Fuan Pelin, Adrian Tamming, Levi A. Pugliese, Giuseppe Martin, Nikolas T. Crupi, Mathieu J. F. Petryk, Julia Austin, Bradley He, Xiaohong Marius, Ricardo Duong, Jessie Jones, Carter Fekete, Emily E. F. Alluqmani, Nouf Chen, Andrew Boulton, Stephen Huh, Michael S. Tang, Matt Y. Taha, Zaid Scut, Elena Diallo, Jean-Simon Azad, Taha Lichty, Brian D. Ilkow, Carolina S. Bell, John C. |
author_sort | Whelan, Jack T. |
collection | PubMed |
description | Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome. Herein, we describe a simple, cost-effective approach to rapidly generate and purify a poxvirus vector with multiple transgenes. By utilizing a simple, modular CRISPR/Cas9 assisted-recombinant vaccinia virus engineering (CARVE) system, we demonstrate generation of a recombinant vaccinia virus expressing three distinct transgenes at three different loci in less than 1 week. We apply CARVE to rapidly generate a novel immunogenic vaccinia virus vector, which expresses a bacterial diadenylate cyclase. This novel vector, STINGPOX, produces cyclic di-AMP, a STING agonist, which drives IFN signaling critical to the anti-tumor immune response. We demonstrate that STINGPOX can drive IFN signaling in primary human cancer tissue explants. Using an immunocompetent murine colon cancer model, we demonstrate that intratumoral administration of STINGPOX in combination with checkpoint inhibitor, anti-PD1, promotes survival post-tumour challenge. These data demonstrate the utility of CRISPR/Cas9 in the rapid arming of poxvirus vectors with therapeutic payloads to create novel immunotherapies. |
format | Online Article Text |
id | pubmed-9880309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98803092023-01-28 CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX Whelan, Jack T. Singaravelu, Ragunath Wang, Fuan Pelin, Adrian Tamming, Levi A. Pugliese, Giuseppe Martin, Nikolas T. Crupi, Mathieu J. F. Petryk, Julia Austin, Bradley He, Xiaohong Marius, Ricardo Duong, Jessie Jones, Carter Fekete, Emily E. F. Alluqmani, Nouf Chen, Andrew Boulton, Stephen Huh, Michael S. Tang, Matt Y. Taha, Zaid Scut, Elena Diallo, Jean-Simon Azad, Taha Lichty, Brian D. Ilkow, Carolina S. Bell, John C. Front Immunol Immunology Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome. Herein, we describe a simple, cost-effective approach to rapidly generate and purify a poxvirus vector with multiple transgenes. By utilizing a simple, modular CRISPR/Cas9 assisted-recombinant vaccinia virus engineering (CARVE) system, we demonstrate generation of a recombinant vaccinia virus expressing three distinct transgenes at three different loci in less than 1 week. We apply CARVE to rapidly generate a novel immunogenic vaccinia virus vector, which expresses a bacterial diadenylate cyclase. This novel vector, STINGPOX, produces cyclic di-AMP, a STING agonist, which drives IFN signaling critical to the anti-tumor immune response. We demonstrate that STINGPOX can drive IFN signaling in primary human cancer tissue explants. Using an immunocompetent murine colon cancer model, we demonstrate that intratumoral administration of STINGPOX in combination with checkpoint inhibitor, anti-PD1, promotes survival post-tumour challenge. These data demonstrate the utility of CRISPR/Cas9 in the rapid arming of poxvirus vectors with therapeutic payloads to create novel immunotherapies. Frontiers Media S.A. 2023-01-13 /pmc/articles/PMC9880309/ /pubmed/36713447 http://dx.doi.org/10.3389/fimmu.2022.1050250 Text en Copyright © 2023 Whelan, Singaravelu, Wang, Pelin, Tamming, Pugliese, Martin, Crupi, Petryk, Austin, He, Marius, Duong, Jones, Fekete, Alluqmani, Chen, Boulton, Huh, Tang, Taha, Scut, Diallo, Azad, Lichty, Ilkow and Bell https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Whelan, Jack T. Singaravelu, Ragunath Wang, Fuan Pelin, Adrian Tamming, Levi A. Pugliese, Giuseppe Martin, Nikolas T. Crupi, Mathieu J. F. Petryk, Julia Austin, Bradley He, Xiaohong Marius, Ricardo Duong, Jessie Jones, Carter Fekete, Emily E. F. Alluqmani, Nouf Chen, Andrew Boulton, Stephen Huh, Michael S. Tang, Matt Y. Taha, Zaid Scut, Elena Diallo, Jean-Simon Azad, Taha Lichty, Brian D. Ilkow, Carolina S. Bell, John C. CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX |
title | CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX |
title_full | CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX |
title_fullStr | CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX |
title_full_unstemmed | CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX |
title_short | CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX |
title_sort | crispr-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic stingpox |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880309/ https://www.ncbi.nlm.nih.gov/pubmed/36713447 http://dx.doi.org/10.3389/fimmu.2022.1050250 |
work_keys_str_mv | AT whelanjackt crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT singaraveluragunath crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT wangfuan crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT pelinadrian crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT tamminglevia crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT pugliesegiuseppe crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT martinnikolast crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT crupimathieujf crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT petrykjulia crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT austinbradley crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT hexiaohong crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT mariusricardo crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT duongjessie crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT jonescarter crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT feketeemilyef crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT alluqmaninouf crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT chenandrew crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT boultonstephen crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT huhmichaels crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT tangmatty crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT tahazaid crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT scutelena crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT diallojeansimon crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT azadtaha crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT lichtybriand crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT ilkowcarolinas crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox AT belljohnc crisprmediatedrapidarmingofpoxvirusvectorsenablesfacilegenerationofthenovelimmunotherapeuticstingpox |