Cargando…
Detecting genomic deletions from high-throughput sequence data with unsupervised learning
BACKGROUND: Structural variation (SV), which ranges from 50 bp to [Formula: see text] 3 Mb in size, is an important type of genetic variations. Deletion is a type of SV in which a part of a chromosome or a sequence of DNA is lost during DNA replication. Three types of signals, including discordant...
Autores principales: | Li, Xin, Wu, Yufeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881243/ https://www.ncbi.nlm.nih.gov/pubmed/36707775 http://dx.doi.org/10.1186/s12859-023-05139-w |
Ejemplares similares
-
Detecting circular RNA from high-throughput sequence data with de Bruijn graph
por: Li, Xin, et al.
Publicado: (2020) -
InvBFM: finding genomic inversions from high-throughput sequence data based on feature mining
por: Wu, Zhongjia, et al.
Publicado: (2020) -
Unsupervised automated high throughput phenotyping of RNAi time-lapse movies
por: Failmezger, Henrik, et al.
Publicado: (2013) -
A high-throughput method for the detection of homoeologous gene deletions in hexaploid wheat
por: Fitzgerald, Timothy L, et al.
Publicado: (2010) -
glbase: a framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data
por: Hutchins, Andrew Paul, et al.
Publicado: (2014)