Cargando…
The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke
BACKGROUND: Robots can generate rich kinematic datasets that have the potential to provide far more insight into impairments than standard clinical ordinal scales. Determining how to define the presence or absence of impairment in individuals using kinematic data, however, can be challenging. Machin...
Autores principales: | Hossain, Delowar, Scott, Stephen H., Cluff, Tyler, Dukelow, Sean P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881388/ https://www.ncbi.nlm.nih.gov/pubmed/36707846 http://dx.doi.org/10.1186/s12984-023-01140-9 |
Ejemplares similares
-
Lesion locations associated with persistent proprioceptive impairment in the upper limbs after stroke
por: Findlater, Sonja E., et al.
Publicado: (2018) -
A robot-based interception task to quantify upper limb impairments in proprioceptive and visual feedback after stroke
por: Park, Kayne, et al.
Publicado: (2023) -
A composite robotic-based measure of upper limb proprioception
por: Kenzie, Jeffrey M., et al.
Publicado: (2017) -
Assessing Impairments in Visuomotor Adaptation After Stroke
por: Moore, Robert T., et al.
Publicado: (2022) -
Clinical, Neuroimaging and Robotic Measures Predict Long-Term Proprioceptive Impairments following Stroke
por: Chilvers, Matthew J., et al.
Publicado: (2023)