Cargando…
Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae
Ongoing symptoms might follow acute COVID-19. Using electronic health information, we compared pre‒ and post‒COVID-19 diagnostic codes to identify symptoms that had higher encounter incidence in the post‒COVID-19 period as sequelae. This method can be used for hypothesis generation and ongoing monit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881771/ https://www.ncbi.nlm.nih.gov/pubmed/36564152 http://dx.doi.org/10.3201/eid2902.220712 |
Sumario: | Ongoing symptoms might follow acute COVID-19. Using electronic health information, we compared pre‒ and post‒COVID-19 diagnostic codes to identify symptoms that had higher encounter incidence in the post‒COVID-19 period as sequelae. This method can be used for hypothesis generation and ongoing monitoring of sequelae of COVID-19 and future emerging diseases. |
---|