Cargando…
Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae
Ongoing symptoms might follow acute COVID-19. Using electronic health information, we compared pre‒ and post‒COVID-19 diagnostic codes to identify symptoms that had higher encounter incidence in the post‒COVID-19 period as sequelae. This method can be used for hypothesis generation and ongoing monit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881771/ https://www.ncbi.nlm.nih.gov/pubmed/36564152 http://dx.doi.org/10.3201/eid2902.220712 |
_version_ | 1784879180380372992 |
---|---|
author | Click, Eleanor S. Malec, Donald Chevinsky, Jennifer R. Tao, Guoyu Melgar, Michael Giovanni, Jennifer E. Gundlapalli, Adi V. Datta, S. Deblina Wong, Karen K. |
author_facet | Click, Eleanor S. Malec, Donald Chevinsky, Jennifer R. Tao, Guoyu Melgar, Michael Giovanni, Jennifer E. Gundlapalli, Adi V. Datta, S. Deblina Wong, Karen K. |
author_sort | Click, Eleanor S. |
collection | PubMed |
description | Ongoing symptoms might follow acute COVID-19. Using electronic health information, we compared pre‒ and post‒COVID-19 diagnostic codes to identify symptoms that had higher encounter incidence in the post‒COVID-19 period as sequelae. This method can be used for hypothesis generation and ongoing monitoring of sequelae of COVID-19 and future emerging diseases. |
format | Online Article Text |
id | pubmed-9881771 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Centers for Disease Control and Prevention |
record_format | MEDLINE/PubMed |
spelling | pubmed-98817712023-02-08 Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae Click, Eleanor S. Malec, Donald Chevinsky, Jennifer R. Tao, Guoyu Melgar, Michael Giovanni, Jennifer E. Gundlapalli, Adi V. Datta, S. Deblina Wong, Karen K. Emerg Infect Dis Dispatch Ongoing symptoms might follow acute COVID-19. Using electronic health information, we compared pre‒ and post‒COVID-19 diagnostic codes to identify symptoms that had higher encounter incidence in the post‒COVID-19 period as sequelae. This method can be used for hypothesis generation and ongoing monitoring of sequelae of COVID-19 and future emerging diseases. Centers for Disease Control and Prevention 2023-02 /pmc/articles/PMC9881771/ /pubmed/36564152 http://dx.doi.org/10.3201/eid2902.220712 Text en https://creativecommons.org/licenses/by/4.0/Emerging Infectious Diseases is a publication of the U.S. Government. This publication is in the public domain and is therefore without copyright. All text from this work may be reprinted freely. Use of these materials should be properly cited. |
spellingShingle | Dispatch Click, Eleanor S. Malec, Donald Chevinsky, Jennifer R. Tao, Guoyu Melgar, Michael Giovanni, Jennifer E. Gundlapalli, Adi V. Datta, S. Deblina Wong, Karen K. Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae |
title | Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae |
title_full | Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae |
title_fullStr | Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae |
title_full_unstemmed | Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae |
title_short | Longitudinal Analysis of Electronic Health Information to Identify Possible COVID-19 Sequelae |
title_sort | longitudinal analysis of electronic health information to identify possible covid-19 sequelae |
topic | Dispatch |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881771/ https://www.ncbi.nlm.nih.gov/pubmed/36564152 http://dx.doi.org/10.3201/eid2902.220712 |
work_keys_str_mv | AT clickeleanors longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae AT malecdonald longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae AT chevinskyjenniferr longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae AT taoguoyu longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae AT melgarmichael longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae AT giovannijennifere longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae AT gundlapalliadiv longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae AT dattasdeblina longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae AT wongkarenk longitudinalanalysisofelectronichealthinformationtoidentifypossiblecovid19sequelae |