Cargando…
Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation
Microdeletion of a 3Mbp region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881859/ https://www.ncbi.nlm.nih.gov/pubmed/36711666 http://dx.doi.org/10.1101/2023.01.03.522615 |
_version_ | 1784879198646566912 |
---|---|
author | Campbell, Philip D. Lee, Isaiah Thyme, Summer Granato, Michael |
author_facet | Campbell, Philip D. Lee, Isaiah Thyme, Summer Granato, Michael |
author_sort | Campbell, Philip D. |
collection | PubMed |
description | Microdeletion of a 3Mbp region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11.2DS pathogenesis; however, which of the six mitochondrial genes contribute to neurodevelopmental phenotypes and their underlying mechanisms remain unresolved. To systematically test 22q11.2DS genes for functional roles in neurodevelopment and behavior, we generated genetic mutants for each of the 37 conserved zebrafish orthologs and performed high throughput behavioral phenotyping using seven behavioral assays. Through this unbiased approach, we identified five single-gene mutants with partially overlapping behavioral phenotypes. Two of these genes, mrpl40 and prodha, encode for mitochondrial proteins and, similar to what we observed in mrpl40 and prodha mutants, pharmacologic inhibition of mitochondrial function during development results in microcephaly. Finally, we show that both mrpl40 and prodha mutants display neural stem and progenitor cell phenotypes, with each gene regulating different neural stem cell populations. Combined, our results demonstrate a critical role for mitochondrial function in neural stem and progenitor cell populations in the developing vertebrate brain and provide compelling evidence that mitochondrial dysfunction during neurodevelopment is linked to brain volume and behavioral phenotypes observed in models of 22q11.2DS. |
format | Online Article Text |
id | pubmed-9881859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-98818592023-01-28 Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation Campbell, Philip D. Lee, Isaiah Thyme, Summer Granato, Michael bioRxiv Article Microdeletion of a 3Mbp region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11.2DS pathogenesis; however, which of the six mitochondrial genes contribute to neurodevelopmental phenotypes and their underlying mechanisms remain unresolved. To systematically test 22q11.2DS genes for functional roles in neurodevelopment and behavior, we generated genetic mutants for each of the 37 conserved zebrafish orthologs and performed high throughput behavioral phenotyping using seven behavioral assays. Through this unbiased approach, we identified five single-gene mutants with partially overlapping behavioral phenotypes. Two of these genes, mrpl40 and prodha, encode for mitochondrial proteins and, similar to what we observed in mrpl40 and prodha mutants, pharmacologic inhibition of mitochondrial function during development results in microcephaly. Finally, we show that both mrpl40 and prodha mutants display neural stem and progenitor cell phenotypes, with each gene regulating different neural stem cell populations. Combined, our results demonstrate a critical role for mitochondrial function in neural stem and progenitor cell populations in the developing vertebrate brain and provide compelling evidence that mitochondrial dysfunction during neurodevelopment is linked to brain volume and behavioral phenotypes observed in models of 22q11.2DS. Cold Spring Harbor Laboratory 2023-01-03 /pmc/articles/PMC9881859/ /pubmed/36711666 http://dx.doi.org/10.1101/2023.01.03.522615 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Campbell, Philip D. Lee, Isaiah Thyme, Summer Granato, Michael Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation |
title | Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation |
title_full | Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation |
title_fullStr | Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation |
title_full_unstemmed | Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation |
title_short | Mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation |
title_sort | mitochondrial genes in the 22q11.2 deleted region regulate neural stem and progenitor cell proliferation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881859/ https://www.ncbi.nlm.nih.gov/pubmed/36711666 http://dx.doi.org/10.1101/2023.01.03.522615 |
work_keys_str_mv | AT campbellphilipd mitochondrialgenesinthe22q112deletedregionregulateneuralstemandprogenitorcellproliferation AT leeisaiah mitochondrialgenesinthe22q112deletedregionregulateneuralstemandprogenitorcellproliferation AT thymesummer mitochondrialgenesinthe22q112deletedregionregulateneuralstemandprogenitorcellproliferation AT granatomichael mitochondrialgenesinthe22q112deletedregionregulateneuralstemandprogenitorcellproliferation |