Cargando…

Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes

Altered function and gene regulation of pancreatic islet beta cells is a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of mechanisms driving T2D is still missing. Here we integrate information from measurements of chromatin activity, gene expression and function in single beta...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Gaowei, Chiou, Joshua, Zeng, Chun, Miller, Michael, Matta, Ileana, Han, Jee Yun, Kadakia, Nikita, Okino, Mei-Lin, Beebe, Elisha, Mallick, Medhavi, Camunas-Soler, Joan, dos Santos, Theodore, Dai, Xiao-Qing, Ellis, Cara, Hang, Yan, Kim, Seung K., MacDonald, Patrick E., Kandeel, Fouad R., Preissl, Sebastian, Gaulton, Kyle J, Sander, Maike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881862/
https://www.ncbi.nlm.nih.gov/pubmed/36711922
http://dx.doi.org/10.1101/2022.12.31.522386
_version_ 1784879198913953792
author Wang, Gaowei
Chiou, Joshua
Zeng, Chun
Miller, Michael
Matta, Ileana
Han, Jee Yun
Kadakia, Nikita
Okino, Mei-Lin
Beebe, Elisha
Mallick, Medhavi
Camunas-Soler, Joan
dos Santos, Theodore
Dai, Xiao-Qing
Ellis, Cara
Hang, Yan
Kim, Seung K.
MacDonald, Patrick E.
Kandeel, Fouad R.
Preissl, Sebastian
Gaulton, Kyle J
Sander, Maike
author_facet Wang, Gaowei
Chiou, Joshua
Zeng, Chun
Miller, Michael
Matta, Ileana
Han, Jee Yun
Kadakia, Nikita
Okino, Mei-Lin
Beebe, Elisha
Mallick, Medhavi
Camunas-Soler, Joan
dos Santos, Theodore
Dai, Xiao-Qing
Ellis, Cara
Hang, Yan
Kim, Seung K.
MacDonald, Patrick E.
Kandeel, Fouad R.
Preissl, Sebastian
Gaulton, Kyle J
Sander, Maike
author_sort Wang, Gaowei
collection PubMed
description Altered function and gene regulation of pancreatic islet beta cells is a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of mechanisms driving T2D is still missing. Here we integrate information from measurements of chromatin activity, gene expression and function in single beta cells with genetic association data to identify disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 non-diabetic, pre-T2D and T2D donors, we robustly identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift in T2D. Subtype-defining active chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is likely induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for identifying mechanisms of complex diseases.
format Online
Article
Text
id pubmed-9881862
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-98818622023-01-28 Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes Wang, Gaowei Chiou, Joshua Zeng, Chun Miller, Michael Matta, Ileana Han, Jee Yun Kadakia, Nikita Okino, Mei-Lin Beebe, Elisha Mallick, Medhavi Camunas-Soler, Joan dos Santos, Theodore Dai, Xiao-Qing Ellis, Cara Hang, Yan Kim, Seung K. MacDonald, Patrick E. Kandeel, Fouad R. Preissl, Sebastian Gaulton, Kyle J Sander, Maike bioRxiv Article Altered function and gene regulation of pancreatic islet beta cells is a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of mechanisms driving T2D is still missing. Here we integrate information from measurements of chromatin activity, gene expression and function in single beta cells with genetic association data to identify disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 non-diabetic, pre-T2D and T2D donors, we robustly identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift in T2D. Subtype-defining active chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is likely induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for identifying mechanisms of complex diseases. Cold Spring Harbor Laboratory 2023-01-02 /pmc/articles/PMC9881862/ /pubmed/36711922 http://dx.doi.org/10.1101/2022.12.31.522386 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Wang, Gaowei
Chiou, Joshua
Zeng, Chun
Miller, Michael
Matta, Ileana
Han, Jee Yun
Kadakia, Nikita
Okino, Mei-Lin
Beebe, Elisha
Mallick, Medhavi
Camunas-Soler, Joan
dos Santos, Theodore
Dai, Xiao-Qing
Ellis, Cara
Hang, Yan
Kim, Seung K.
MacDonald, Patrick E.
Kandeel, Fouad R.
Preissl, Sebastian
Gaulton, Kyle J
Sander, Maike
Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes
title Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes
title_full Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes
title_fullStr Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes
title_full_unstemmed Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes
title_short Integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes
title_sort integration of single-cell multiomic measurements across disease states with genetics identifies mechanisms of beta cell dysfunction in type 2 diabetes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881862/
https://www.ncbi.nlm.nih.gov/pubmed/36711922
http://dx.doi.org/10.1101/2022.12.31.522386
work_keys_str_mv AT wanggaowei integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT chioujoshua integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT zengchun integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT millermichael integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT mattaileana integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT hanjeeyun integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT kadakianikita integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT okinomeilin integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT beebeelisha integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT mallickmedhavi integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT camunassolerjoan integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT dossantostheodore integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT daixiaoqing integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT elliscara integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT hangyan integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT kimseungk integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT macdonaldpatricke integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT kandeelfouadr integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT preisslsebastian integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT gaultonkylej integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes
AT sandermaike integrationofsinglecellmultiomicmeasurementsacrossdiseasestateswithgeneticsidentifiesmechanismsofbetacelldysfunctionintype2diabetes