Cargando…
RNA-seq preprocessing and sample size considerations for gene network inference
BACKGROUND: Gene network inference (GNI) methods have the potential to reveal functional relationships between different genes and their products. Most GNI algorithms have been developed for microarray gene expression datasets and their application to RNA-seq data is relatively recent. As the charac...
Autores principales: | Altay, Gökmen, Zapardiel-Gonzalo, Jose, Peters, Bjoern |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881880/ https://www.ncbi.nlm.nih.gov/pubmed/36711979 http://dx.doi.org/10.1101/2023.01.02.522518 |
Ejemplares similares
-
Inferring the conservative causal core of gene regulatory networks
por: Altay, Gökmen, et al.
Publicado: (2010) -
Structural influence of gene networks on their inference: analysis of C3NET
por: Altay, Gökmen, et al.
Publicado: (2011) -
Optimization of miRNA-seq data preprocessing
por: Tam, Shirley, et al.
Publicado: (2015) -
Netmes: Assessing Gene Network Inference Algorithms by Network-Based Measures
por: Altay, Gökmen, et al.
Publicado: (2014) -
FastqPuri: high-performance preprocessing of RNA-seq data
por: Pérez-Rubio, Paula, et al.
Publicado: (2019)