Cargando…
Evidence for in vitro extensive proliferation of adult hepatocytes and biliary epithelial cells
Over the last several years, a method has emerged which endows adult hepatocytes with in vitro proliferative capacity, producing chemically-induced liver progenitors (CLiPs). However, a recent study questioned the origin of these cells, suggesting that resident liver progenitor cells, but not hepato...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881927/ https://www.ncbi.nlm.nih.gov/pubmed/36712014 http://dx.doi.org/10.1101/2023.01.03.522656 |
Sumario: | Over the last several years, a method has emerged which endows adult hepatocytes with in vitro proliferative capacity, producing chemically-induced liver progenitors (CLiPs). However, a recent study questioned the origin of these cells, suggesting that resident liver progenitor cells, but not hepatocytes, proliferate. Here, we provide lineage tracing-based evidence that adult hepatocytes acquire proliferative capacity in vitro. Unexpectedly, we also found that the CLiP method allows biliary epithelial cells to acquire extensive proliferative capacity. Interestingly, after long-term culture, hepatocyte-derived cells (hepCLiPs) and biliary-derived cells (bilCLiPs) become similar in their gene expression patterns, and they both exhibit differentiation capacity to form hepatocyte-like cells. Finally, we provide evidence that hepCLiPs can repopulate chronically injured mouse livers, reinforcing our earlier argument that CLiPs can be a cell source for liver regenerative medicine. Moreover, this study offers bilCLiPs as a potential cell source for liver regenerative medicine. |
---|