Cargando…

Increased mesoscale diffusivity in response to acute glucose starvation

Macromolecular crowding is an important parameter that impacts multiple biological processes. Passive microrheology using single particle tracking is a powerful means of studying macromolecular crowding. Here we monitored the diffusivity of self-assembling fluorescent nanoparticles (μNS) in response...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Ying, Gresham, David, Holt, Liam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882054/
https://www.ncbi.nlm.nih.gov/pubmed/36711511
http://dx.doi.org/10.1101/2023.01.10.523352
Descripción
Sumario:Macromolecular crowding is an important parameter that impacts multiple biological processes. Passive microrheology using single particle tracking is a powerful means of studying macromolecular crowding. Here we monitored the diffusivity of self-assembling fluorescent nanoparticles (μNS) in response to acute glucose starvation. mRNP diffusivity was reduced upon glucose starvation as previously reported. In contrast, we observed increased diffusivity of μNS particles. Our results suggest that, upon glucose starvation, mRNP granule diffusivity may be reduced due to changes in physical interactions, while global crowding in the cytoplasm may be reduced.